{"title":"Shifting numbers of abelian varieties via bounded t-structures","authors":"Yu-Wei Fan","doi":"10.1007/s00229-023-01525-z","DOIUrl":"https://doi.org/10.1007/s00229-023-01525-z","url":null,"abstract":"<p>The shifting numbers measure the asymptotic amount by which an endofunctor of a triangulated category translates inside the category, and are analogous to Poincaré translation numbers that are widely used in dynamical systems. Motivated by this analogy, Fan–Filip raised the following question: “Do the shifting numbers define a quasimorphism on the group of autoequivalences of a triangulated category?” An affirmative answer was given by Fan–Filip for the bounded derived category of coherent sheaves on an elliptic curve or an abelian surface, via properties of the spaces of Bridgeland stability conditions on these categories. We prove in this article that the question has an affirmative answer for abelian varieties of arbitrary dimensions, generalizing the result of Fan–Filip. One of the key steps is to establish an alternative definition of the shifting numbers via bounded <i>t</i>-structures on triangulated categories. In particular, the full package of a Bridgeland stability condition (a bounded <i>t</i>-structure, and a central charge on a charge lattice) is not necessary for the purpose of computing the shifting numbers.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linear hyperelliptic Hodge integrals","authors":"Adam Afandi","doi":"10.1007/s00229-023-01519-x","DOIUrl":"https://doi.org/10.1007/s00229-023-01519-x","url":null,"abstract":"<p>We provide a closed form expression for linear Hodge integrals on the hyperelliptic locus. Specifically, we find a succinct combinatorial formula for all intersection numbers on the hyperelliptic locus with one <span>(lambda )</span>-class, and powers of a <span>(psi )</span>-class pulled back along the branch map. This is achieved by using Atiyah–Bott localization on a stack of stable maps into the orbifold <span>(left[ {mathbb {P}}^1/{mathbb {Z}}_2right] )</span>.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138542996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Dirichlet problem for prescribed curvature equations of p-convex hypersurfaces","authors":"Weisong Dong","doi":"10.1007/s00229-023-01522-2","DOIUrl":"https://doi.org/10.1007/s00229-023-01522-2","url":null,"abstract":"<p>In this paper, we study the Dirichlet problem for <i>p</i>-convex hypersurfaces with prescribed curvature. We prove that there exists a graphic hypersurface satisfying the prescribed curvature equation with homogeneous boundary condition. An interior curvature estimate is also obtained.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polyharmonic surfaces in 3-dimensional homogeneous spaces","authors":"S. Montaldo, C. Oniciuc, A. Ratto","doi":"10.1007/s00229-023-01520-4","DOIUrl":"https://doi.org/10.1007/s00229-023-01520-4","url":null,"abstract":"Abstract In the first part of this paper we shall classify proper triharmonic isoparametric surfaces in 3-dimensional homogeneous spaces (Bianchi-Cartan-Vranceanu spaces, shortly BCV-spaces). We shall also prove that triharmonic Hopf cylinders are necessarily CMC. In the last section we shall determine a complete classification of CMC r -harmonic Hopf cylinders in BCV-spaces, $$r ge 3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> . This result ensures the existence, for suitable values of r , of an ample family of new examples of r -harmonic surfaces in BCV-spaces.","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136281667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cuspidal components of Siegel modular forms for large discrete series representations of $$textrm{Sp}_4({mathbb {R}})$$","authors":"Shuji Horinaga, Hiro-aki Narita","doi":"10.1007/s00229-023-01513-3","DOIUrl":"https://doi.org/10.1007/s00229-023-01513-3","url":null,"abstract":"","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136282312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances","authors":"Guanhua Liu","doi":"10.1007/s00229-023-01521-3","DOIUrl":"https://doi.org/10.1007/s00229-023-01521-3","url":null,"abstract":"","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On algebraic Chern classes of flat vector bundles","authors":"Adrian Langer","doi":"10.1007/s00229-023-01518-y","DOIUrl":"https://doi.org/10.1007/s00229-023-01518-y","url":null,"abstract":"Abstract We show that under some assumptions on the monodromy group some combinations of higher Chern classes of a flat vector bundle are torsion in the Chow group. Similar results hold for flat vector bundles that deform to such flat vector bundles (also in case of quasi-projective varieties). The results are motivated by Bloch’s conjecture on Chern classes of flat vector bundles on smooth complex projective varieties but in some cases they give a more precise information. We also study Higgs version of Bloch’s conjecture and analogous problems in the positive characteristic case.","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135191536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the rationality of certain Fano threefolds","authors":"Ciro Ciliberto","doi":"10.1007/s00229-023-01514-2","DOIUrl":"https://doi.org/10.1007/s00229-023-01514-2","url":null,"abstract":"Abstract In this paper we study the rationality problem for Fano threefolds $$Xsubset {mathbb P}^{p+1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> of genus p , that are Gorenstein, with at most canonical singularities. The main results are: (1) a trigonal Fano threefold of genus p is rational as soon as $$pgeqslant 8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> (this result has already been obtained in Przyjalkowski et al. (Izv Math 69(2):365–421, 2005), but we give here an independent proof); (2) a non-trigonal Fano threefold of genus $$pgeqslant 7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> </mml:math> containing a plane is rational; (3) any Fano threefold of genus $$pgeqslant 17$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>17</mml:mn> </mml:mrow> </mml:math> is rational; (4) a Fano threefold of genus $$pgeqslant 12$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> </mml:math> containing an ordinary line $$ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> in its smooth locus is rational.","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boundedness of regular del Pezzo surfaces over imperfect fields","authors":"Hiromu Tanaka","doi":"10.1007/s00229-023-01517-z","DOIUrl":"https://doi.org/10.1007/s00229-023-01517-z","url":null,"abstract":"Abstract For a regular del Pezzo surface X , we prove that $$|-12K_X|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mo>-</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>X</mml:mi> </mml:msub> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is very ample. Furthermore, we also give an explicit upper bound for the volume $$K_X^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>K</mml:mi> <mml:mi>X</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> which depends only on $$[k: k^p]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>k</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>k</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> for the base field k . As a consequence, we obtain the boundedness of geometrically integral regular del Pezzo surfaces.","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136067570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}