{"title":"Cuspidal components of Siegel modular forms for large discrete series representations of $$textrm{Sp}_4({mathbb {R}})$$","authors":"Shuji Horinaga, Hiro-aki Narita","doi":"10.1007/s00229-023-01513-3","DOIUrl":"https://doi.org/10.1007/s00229-023-01513-3","url":null,"abstract":"","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"64 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136282312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances","authors":"Guanhua Liu","doi":"10.1007/s00229-023-01521-3","DOIUrl":"https://doi.org/10.1007/s00229-023-01521-3","url":null,"abstract":"","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":" 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On algebraic Chern classes of flat vector bundles","authors":"Adrian Langer","doi":"10.1007/s00229-023-01518-y","DOIUrl":"https://doi.org/10.1007/s00229-023-01518-y","url":null,"abstract":"Abstract We show that under some assumptions on the monodromy group some combinations of higher Chern classes of a flat vector bundle are torsion in the Chow group. Similar results hold for flat vector bundles that deform to such flat vector bundles (also in case of quasi-projective varieties). The results are motivated by Bloch’s conjecture on Chern classes of flat vector bundles on smooth complex projective varieties but in some cases they give a more precise information. We also study Higgs version of Bloch’s conjecture and analogous problems in the positive characteristic case.","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":" 90","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135191536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the rationality of certain Fano threefolds","authors":"Ciro Ciliberto","doi":"10.1007/s00229-023-01514-2","DOIUrl":"https://doi.org/10.1007/s00229-023-01514-2","url":null,"abstract":"Abstract In this paper we study the rationality problem for Fano threefolds $$Xsubset {mathbb P}^{p+1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> of genus p , that are Gorenstein, with at most canonical singularities. The main results are: (1) a trigonal Fano threefold of genus p is rational as soon as $$pgeqslant 8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> (this result has already been obtained in Przyjalkowski et al. (Izv Math 69(2):365–421, 2005), but we give here an independent proof); (2) a non-trigonal Fano threefold of genus $$pgeqslant 7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> </mml:math> containing a plane is rational; (3) any Fano threefold of genus $$pgeqslant 17$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>17</mml:mn> </mml:mrow> </mml:math> is rational; (4) a Fano threefold of genus $$pgeqslant 12$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> </mml:math> containing an ordinary line $$ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> in its smooth locus is rational.","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"32 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boundedness of regular del Pezzo surfaces over imperfect fields","authors":"Hiromu Tanaka","doi":"10.1007/s00229-023-01517-z","DOIUrl":"https://doi.org/10.1007/s00229-023-01517-z","url":null,"abstract":"Abstract For a regular del Pezzo surface X , we prove that $$|-12K_X|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mo>-</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>X</mml:mi> </mml:msub> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is very ample. Furthermore, we also give an explicit upper bound for the volume $$K_X^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>K</mml:mi> <mml:mi>X</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> which depends only on $$[k: k^p]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>k</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>k</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> for the base field k . As a consequence, we obtain the boundedness of geometrically integral regular del Pezzo surfaces.","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136067570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bounds for GL$$_2$$ $$times $$ GL$$_2$$ L-functions in the depth aspect","authors":"Qingfeng Sun","doi":"10.1007/s00229-023-01515-1","DOIUrl":"https://doi.org/10.1007/s00229-023-01515-1","url":null,"abstract":"","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"30 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136232794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On classic n-universal quadratic forms over dyadic local fields","authors":"Zilong He","doi":"10.1007/s00229-023-01516-0","DOIUrl":"https://doi.org/10.1007/s00229-023-01516-0","url":null,"abstract":"","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"46 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135316036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a microlocal version of Young’s product theorem","authors":"Claudio Dappiaggi, Paolo Rinaldi, Federico Sclavi","doi":"10.1007/s00229-023-01510-6","DOIUrl":"https://doi.org/10.1007/s00229-023-01510-6","url":null,"abstract":"Abstract A key result in distribution theory is Young’s product theorem which states that the product between two Hölder distributions $$uin mathcal {C}^alpha (mathbb {R}^d)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and $$vin mathcal {C}^beta (mathbb {R}^d)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>v</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>β</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> can be unambiguously defined if $$alpha +beta >0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> . We revisit the problem of multiplying two Hölder distributions from the viewpoint of microlocal analysis, using techniques proper of Sobolev wavefront set. This allows us to establish sufficient conditions which allow the multiplication of two Hölder distributions even when $$alpha +beta le 0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> .","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135924789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}