论法诺的某些合理性

Pub Date : 2023-11-06 DOI:10.1007/s00229-023-01514-2
Ciro Ciliberto
{"title":"论法诺的某些合理性","authors":"Ciro Ciliberto","doi":"10.1007/s00229-023-01514-2","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the rationality problem for Fano threefolds $$X\\subset {\\mathbb P}^{p+1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> of genus p , that are Gorenstein, with at most canonical singularities. The main results are: (1) a trigonal Fano threefold of genus p is rational as soon as $$p\\geqslant 8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> (this result has already been obtained in Przyjalkowski et al. (Izv Math 69(2):365–421, 2005), but we give here an independent proof); (2) a non-trigonal Fano threefold of genus $$p\\geqslant 7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> </mml:math> containing a plane is rational; (3) any Fano threefold of genus $$p\\geqslant 17$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>17</mml:mn> </mml:mrow> </mml:math> is rational; (4) a Fano threefold of genus $$p\\geqslant 12$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> </mml:math> containing an ordinary line $$\\ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> in its smooth locus is rational.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the rationality of certain Fano threefolds\",\"authors\":\"Ciro Ciliberto\",\"doi\":\"10.1007/s00229-023-01514-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we study the rationality problem for Fano threefolds $$X\\\\subset {\\\\mathbb P}^{p+1}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> of genus p , that are Gorenstein, with at most canonical singularities. The main results are: (1) a trigonal Fano threefold of genus p is rational as soon as $$p\\\\geqslant 8$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> (this result has already been obtained in Przyjalkowski et al. (Izv Math 69(2):365–421, 2005), but we give here an independent proof); (2) a non-trigonal Fano threefold of genus $$p\\\\geqslant 7$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> </mml:math> containing a plane is rational; (3) any Fano threefold of genus $$p\\\\geqslant 17$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>17</mml:mn> </mml:mrow> </mml:math> is rational; (4) a Fano threefold of genus $$p\\\\geqslant 12$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> </mml:math> containing an ordinary line $$\\\\ell $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ℓ</mml:mi> </mml:math> in its smooth locus is rational.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-023-01514-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00229-023-01514-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了具有至多正则奇点的格伦斯坦(Gorenstein)属P的Fano三倍$$X\subset {\mathbb P}^{p+1}$$ X∧P P + 1的合理性问题。主要结果是:(1)当$$p\geqslant 8$$ p小于8时,p属的三角形Fano三倍是有理的(这个结果已经在Przyjalkowski等人中获得(Izv Math 69(2): 365-421, 2005),但我们在这里给出了一个独立的证明);(2)含有平面的$$p\geqslant 7$$ p小于7属的非三角形Fano三倍是有理的;(3)属$$p\geqslant 17$$ p大于或等于17的任何Fano三倍是合理的;(4)属$$p\geqslant 12$$ p小于12的Fano三倍在其平滑位点中包含一条普通线$$\ell $$ r是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the rationality of certain Fano threefolds
Abstract In this paper we study the rationality problem for Fano threefolds $$X\subset {\mathbb P}^{p+1}$$ X P p + 1 of genus p , that are Gorenstein, with at most canonical singularities. The main results are: (1) a trigonal Fano threefold of genus p is rational as soon as $$p\geqslant 8$$ p 8 (this result has already been obtained in Przyjalkowski et al. (Izv Math 69(2):365–421, 2005), but we give here an independent proof); (2) a non-trigonal Fano threefold of genus $$p\geqslant 7$$ p 7 containing a plane is rational; (3) any Fano threefold of genus $$p\geqslant 17$$ p 17 is rational; (4) a Fano threefold of genus $$p\geqslant 12$$ p 12 containing an ordinary line $$\ell $$ in its smooth locus is rational.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信