Boundedness of regular del Pezzo surfaces over imperfect fields

IF 0.5 4区 数学 Q3 MATHEMATICS
Hiromu Tanaka
{"title":"Boundedness of regular del Pezzo surfaces over imperfect fields","authors":"Hiromu Tanaka","doi":"10.1007/s00229-023-01517-z","DOIUrl":null,"url":null,"abstract":"Abstract For a regular del Pezzo surface X , we prove that $$|-12K_X|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mo>-</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>X</mml:mi> </mml:msub> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is very ample. Furthermore, we also give an explicit upper bound for the volume $$K_X^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>K</mml:mi> <mml:mi>X</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> which depends only on $$[k: k^p]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>k</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>k</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> for the base field k . As a consequence, we obtain the boundedness of geometrically integral regular del Pezzo surfaces.","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"4 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00229-023-01517-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract For a regular del Pezzo surface X , we prove that $$|-12K_X|$$ | - 12 K X | is very ample. Furthermore, we also give an explicit upper bound for the volume $$K_X^2$$ K X 2 which depends only on $$[k: k^p]$$ [ k : k p ] for the base field k . As a consequence, we obtain the boundedness of geometrically integral regular del Pezzo surfaces.
不完全域上正则del Pezzo曲面的有界性
摘要对于正则del Pezzo曲面X,证明了$$|-12K_X|$$ | - 12 K X |是非常充足的。此外,我们还给出了体积$$K_X^2$$ K x2的显式上界,该上界仅取决于基础场K的$$[k: k^p]$$ [K: kp]。由此得到几何积分正则del Pezzo曲面的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信