{"title":"不完全域上正则del Pezzo曲面的有界性","authors":"Hiromu Tanaka","doi":"10.1007/s00229-023-01517-z","DOIUrl":null,"url":null,"abstract":"Abstract For a regular del Pezzo surface X , we prove that $$|-12K_X|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mo>-</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>X</mml:mi> </mml:msub> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is very ample. Furthermore, we also give an explicit upper bound for the volume $$K_X^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>K</mml:mi> <mml:mi>X</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> which depends only on $$[k: k^p]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>k</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>k</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> for the base field k . As a consequence, we obtain the boundedness of geometrically integral regular del Pezzo surfaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Boundedness of regular del Pezzo surfaces over imperfect fields\",\"authors\":\"Hiromu Tanaka\",\"doi\":\"10.1007/s00229-023-01517-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a regular del Pezzo surface X , we prove that $$|-12K_X|$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mo>-</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>X</mml:mi> </mml:msub> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is very ample. Furthermore, we also give an explicit upper bound for the volume $$K_X^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>K</mml:mi> <mml:mi>X</mml:mi> <mml:mn>2</mml:mn> </mml:msubsup> </mml:math> which depends only on $$[k: k^p]$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>[</mml:mo> <mml:mi>k</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mi>k</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> for the base field k . As a consequence, we obtain the boundedness of geometrically integral regular del Pezzo surfaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-023-01517-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00229-023-01517-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
摘要对于正则del Pezzo曲面X,证明了$$|-12K_X|$$ | - 12 K X |是非常充足的。此外,我们还给出了体积$$K_X^2$$ K x2的显式上界,该上界仅取决于基础场K的$$[k: k^p]$$ [K: kp]。由此得到几何积分正则del Pezzo曲面的有界性。
Boundedness of regular del Pezzo surfaces over imperfect fields
Abstract For a regular del Pezzo surface X , we prove that $$|-12K_X|$$ |-12KX| is very ample. Furthermore, we also give an explicit upper bound for the volume $$K_X^2$$ KX2 which depends only on $$[k: k^p]$$ [k:kp] for the base field k . As a consequence, we obtain the boundedness of geometrically integral regular del Pezzo surfaces.