平面向量束的代数Chern类

Pub Date : 2023-11-09 DOI:10.1007/s00229-023-01518-y
Adrian Langer
{"title":"平面向量束的代数Chern类","authors":"Adrian Langer","doi":"10.1007/s00229-023-01518-y","DOIUrl":null,"url":null,"abstract":"Abstract We show that under some assumptions on the monodromy group some combinations of higher Chern classes of a flat vector bundle are torsion in the Chow group. Similar results hold for flat vector bundles that deform to such flat vector bundles (also in case of quasi-projective varieties). The results are motivated by Bloch’s conjecture on Chern classes of flat vector bundles on smooth complex projective varieties but in some cases they give a more precise information. We also study Higgs version of Bloch’s conjecture and analogous problems in the positive characteristic case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On algebraic Chern classes of flat vector bundles\",\"authors\":\"Adrian Langer\",\"doi\":\"10.1007/s00229-023-01518-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show that under some assumptions on the monodromy group some combinations of higher Chern classes of a flat vector bundle are torsion in the Chow group. Similar results hold for flat vector bundles that deform to such flat vector bundles (also in case of quasi-projective varieties). The results are motivated by Bloch’s conjecture on Chern classes of flat vector bundles on smooth complex projective varieties but in some cases they give a more precise information. We also study Higgs version of Bloch’s conjecture and analogous problems in the positive characteristic case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-023-01518-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00229-023-01518-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要在单群的某些假设下,证明了平面向量束的高Chern类的某些组合在Chow群中是挠性的。类似的结果也适用于变形为这种平面向量束的平面向量束(也适用于拟射影变体)。这些结果是由布洛赫关于光滑复射影变体上的平坦向量束的陈类的猜想所激发的,但在某些情况下它们给出了更精确的信息。我们还研究了希格斯版布洛赫猜想和正特征情况下的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On algebraic Chern classes of flat vector bundles

分享
查看原文
On algebraic Chern classes of flat vector bundles
Abstract We show that under some assumptions on the monodromy group some combinations of higher Chern classes of a flat vector bundle are torsion in the Chow group. Similar results hold for flat vector bundles that deform to such flat vector bundles (also in case of quasi-projective varieties). The results are motivated by Bloch’s conjecture on Chern classes of flat vector bundles on smooth complex projective varieties but in some cases they give a more precise information. We also study Higgs version of Bloch’s conjecture and analogous problems in the positive characteristic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信