{"title":"On the rationality of certain Fano threefolds","authors":"Ciro Ciliberto","doi":"10.1007/s00229-023-01514-2","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the rationality problem for Fano threefolds $$X\\subset {\\mathbb P}^{p+1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>X</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> of genus p , that are Gorenstein, with at most canonical singularities. The main results are: (1) a trigonal Fano threefold of genus p is rational as soon as $$p\\geqslant 8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> (this result has already been obtained in Przyjalkowski et al. (Izv Math 69(2):365–421, 2005), but we give here an independent proof); (2) a non-trigonal Fano threefold of genus $$p\\geqslant 7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> </mml:math> containing a plane is rational; (3) any Fano threefold of genus $$p\\geqslant 17$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>17</mml:mn> </mml:mrow> </mml:math> is rational; (4) a Fano threefold of genus $$p\\geqslant 12$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> </mml:math> containing an ordinary line $$\\ell $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ℓ</mml:mi> </mml:math> in its smooth locus is rational.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00229-023-01514-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper we study the rationality problem for Fano threefolds $$X\subset {\mathbb P}^{p+1}$$ X⊂Pp+1 of genus p , that are Gorenstein, with at most canonical singularities. The main results are: (1) a trigonal Fano threefold of genus p is rational as soon as $$p\geqslant 8$$ p⩾8 (this result has already been obtained in Przyjalkowski et al. (Izv Math 69(2):365–421, 2005), but we give here an independent proof); (2) a non-trigonal Fano threefold of genus $$p\geqslant 7$$ p⩾7 containing a plane is rational; (3) any Fano threefold of genus $$p\geqslant 17$$ p⩾17 is rational; (4) a Fano threefold of genus $$p\geqslant 12$$ p⩾12 containing an ordinary line $$\ell $$ ℓ in its smooth locus is rational.