Mechatronics最新文献

筛选
英文 中文
FPAA-based control of a high-speed flexure-guided AFM nanopositioner 基于 FPAA 的高速挠性制导 AFM 纳米定位器控制技术
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2024-11-16 DOI: 10.1016/j.mechatronics.2024.103268
Erfan Khodabakhshi, S.O. Reza Moheimani
{"title":"FPAA-based control of a high-speed flexure-guided AFM nanopositioner","authors":"Erfan Khodabakhshi,&nbsp;S.O. Reza Moheimani","doi":"10.1016/j.mechatronics.2024.103268","DOIUrl":"10.1016/j.mechatronics.2024.103268","url":null,"abstract":"<div><div>This paper presents the design, characterization, and control of a novel flexure-guided piezoelectrically actuated atomic force microscope (AFM) nanopositioner. The planar scanner achieves a scan range of <span><math><mrow><mn>5</mn><mo>.</mo><mn>8</mn><mo>,</mo><mi>μ</mi><mi>m</mi></mrow></math></span> in both X- and Y-directions with a first resonance frequency above <span><math><mrow><mn>15</mn><mspace></mspace><mi>kHz</mi></mrow></math></span>. Lateral displacements are measured using an interferometer sensor. A signal-transformation-based control technique and a signal pre-shaping method are explored to enhance raster scanning. An integral resonant controller (IRC) increases closed-loop bandwidth by damping the scanner’s fast axis dominant mode. Since the high-bandwidth system requires a high sampling rate, the IRC scheme is implemented using a field-programmable analog array (FPAA). The tracking performance is improved by a double integrator. The effectiveness of the signal transformation approach (STA) with the pre-shaping method in the closed-loop system is investigated. Tracking errors at frequencies from <span><math><mrow><mn>10</mn><mspace></mspace><mi>Hz</mi></mrow></math></span> to <span><math><mrow><mn>300</mn><mspace></mspace><mi>Hz</mi></mrow></math></span> maintained RMS values below <span><math><mrow><mn>50</mn><mspace></mspace><mi>nm</mi></mrow></math></span>. Results demonstrate the technique’s success, achieving rapid time-lapse AFM imaging at 10 frames per second over a <span><math><mrow><mn>2</mn><mspace></mspace><mi>μ</mi><mi>m</mi><mo>×</mo><mn>2</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> scan area.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103268"},"PeriodicalIF":3.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-cylinder leveling control systems based on dual-valve parallel and adaptive eccentric torque suppression 基于双气门并联和自适应偏心扭矩抑制的多气缸调平控制系统
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2024-11-09 DOI: 10.1016/j.mechatronics.2024.103269
Heng Du , Ye Wu , Zhizhong Zhang , Qigang Wang , Jiahe Luo , Jinghui Fang
{"title":"Multi-cylinder leveling control systems based on dual-valve parallel and adaptive eccentric torque suppression","authors":"Heng Du ,&nbsp;Ye Wu ,&nbsp;Zhizhong Zhang ,&nbsp;Qigang Wang ,&nbsp;Jiahe Luo ,&nbsp;Jinghui Fang","doi":"10.1016/j.mechatronics.2024.103269","DOIUrl":"10.1016/j.mechatronics.2024.103269","url":null,"abstract":"<div><div>In the composite material hydraulic press, the mismatched velocities between the movable beam and the multiple leveling cylinders produce disturbing superfluous forces, and the eccentric torque causes the movable beam to tilt when pressed. They severely damage the leveling displacement accuracy and limit the implementation of muti-cylinder system in higher precision field. A dual-loop leveling control strategy is proposed, comprising a dual-valve parallel pressure inner loop and an adaptive control displacement outer loop. Firstly, a dual-valve parallel scheme is proposed in the pressure inner loop, where a compensation valve is added in parallel with the original single-valve. A variable compensation valve spool algorithm is designed, considering both velocity and displacement to mitigate the effects of superfluous forces and achieve precise and smooth leveling. Secondly, a control strategy for the adaptive displacement outer loop is designed to estimate and compensate for eccentric torque. An innovative torque decoupling algorithm is formulated to overcome the challenge of indeterminate coupling relations between inner and outer loops caused by the adaptive incorporation of dual-loop control. Then, eccentric load compensation torque is decoupled to the multiple leveling cylinders and derives the desired pressure for the inner loop. The inner loop suppresses the disturbance of eccentric torque to enhance robust leveling precision. Finally, the effectiveness of the proposed strategy was validated through experimentation on the constructed hydraulic press leveling system test bench. The control strategy presented in this paper provides a reference for achieving smooth and precise control in multi-cylinder systems.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103269"},"PeriodicalIF":3.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active safety control for distributed drive electric vehicle with unilateral motor fault based on mechanical redundancy 基于机械冗余的分布式驱动电动汽车单侧电机故障主动安全控制系统
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2024-11-06 DOI: 10.1016/j.mechatronics.2024.103266
Changan Ren , Lipeng Zhang , Minghan Chen , Yang Zhang , Minghui Zhao
{"title":"Active safety control for distributed drive electric vehicle with unilateral motor fault based on mechanical redundancy","authors":"Changan Ren ,&nbsp;Lipeng Zhang ,&nbsp;Minghan Chen ,&nbsp;Yang Zhang ,&nbsp;Minghui Zhao","doi":"10.1016/j.mechatronics.2024.103266","DOIUrl":"10.1016/j.mechatronics.2024.103266","url":null,"abstract":"<div><div>Distributed drive can significantly improve the dynamics performance of electric vehicles. However, once the drive motor fails, it will cause harm to passengers and the surrounding environment. To solve the above problems, an active safety control method is proposed based on the mechanical redundancy of a centralized and distributed coupling transmission, which can switch the vehicle drive mode from two motors distributed drive to one motor centralized drive. Regarding fault diagnosis, a motor torque observer is established based on the coupling relationship between the steering system and the drive system to address motor communication faults. To reduce the risk of misdiagnosis, a combined fault diagnosis strategy that considers both torque difference and torque change rate is proposed. The effectiveness of the method is proved by simulation and real vehicle tests. In the aspect of safety control, a fast mode switching method from the distributed drive to the centralized drive is proposed. The test results show that the shift time of the fast mode switching method is reduced by 13 % compared with the traditional switching method, which can reduce the time of power interruption and quickly restore the driving force to ensure the vehicle safety.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103266"},"PeriodicalIF":3.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recursive terminal sliding mode control for the 3D overhead crane systems with motion planning 带运动规划的三维桥式起重机系统的递归终端滑模控制
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2024-11-05 DOI: 10.1016/j.mechatronics.2024.103267
Shourui Wang, Wuyin Jin
{"title":"Recursive terminal sliding mode control for the 3D overhead crane systems with motion planning","authors":"Shourui Wang,&nbsp;Wuyin Jin","doi":"10.1016/j.mechatronics.2024.103267","DOIUrl":"10.1016/j.mechatronics.2024.103267","url":null,"abstract":"<div><div>In practical scenarios, the unexpected payload swinging of a 3D overhead crane can significantly diminish transportation efficiency and safety. To enhance transportation efficiency and address payload oscillation challenges inherent in 3D overhead crane systems, a novel recursive terminal sliding mode control strategy integrated with motion planning is presented in this work. Specifically, to reconcile the dual objectives of optimizing operational efficiency while mitigating payload swing, a novel smooth S-shaped reference trajectory is introduced, and a recursive terminal sliding mode controller is devised to trace this trajectory, incorporating the construction of a recursive sliding mode surface that combines swing angle and displacement deviation. Finally, the proposed method is validated through a series of numerical simulations and experimental trials. The outcomes highlight the robustness of the proposed controller, facilitating swift tracking of reference trajectory even in the presence of nonzero initial conditions or external disturbances. Notably, by significantly reducing payload swing angles, the proposed approach enhances transportation safety.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103267"},"PeriodicalIF":3.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stiffness-fault-tolerant control strategy for elastic actuators with interaction impedance adaptation 具有交互阻抗适应性的弹性致动器刚性容错控制策略
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2024-10-28 DOI: 10.1016/j.mechatronics.2024.103265
Rodrigo J. Velasco-Guillen , Raphaël Furnémont , Tom Verstraten , Bram Vanderborght , Josep M. Font-Llagunes , Philipp Beckerle
{"title":"Stiffness-fault-tolerant control strategy for elastic actuators with interaction impedance adaptation","authors":"Rodrigo J. Velasco-Guillen ,&nbsp;Raphaël Furnémont ,&nbsp;Tom Verstraten ,&nbsp;Bram Vanderborght ,&nbsp;Josep M. Font-Llagunes ,&nbsp;Philipp Beckerle","doi":"10.1016/j.mechatronics.2024.103265","DOIUrl":"10.1016/j.mechatronics.2024.103265","url":null,"abstract":"<div><div>Elastic actuators have the potential to enable safe interaction and energy efficient mobility, making them suitable for physical human–robot interaction. However, their increased complexity makes technical faults and their prevention a relevant research topic, particularly considering faults in elastic and kinematic elements. In this article we investigate a stiffness-fault-tolerant control strategy for elastic actuators, based on impedance control, which compensates for internal faults and adapts to a desired interaction impedance behavior. We analyze the control strategy regarding its stability, and adapt it to the dynamic characteristics of two systems: a mechanically adjustable compliance actuator (MACCEPA) and a series–parallel elastic actuator (+SPEA), highlighting the strategy’s general applicability to multiple actuator designs, considering nonlinear and redundant characteristics. Experimental validation with these systems shows that the control strategy is capable of accurately tracking reference output trajectories and adapting interaction characteristics, under fault and disturbance conditions, showcasing the versatile applicability of the strategy while achieving fault-tolerance.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103265"},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelet-packet-transform-based identification of motor systems 基于小波包变换的电机系统识别
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2024-10-24 DOI: 10.1016/j.mechatronics.2024.103264
Zhengfeng Huang , Beili Gong
{"title":"Wavelet-packet-transform-based identification of motor systems","authors":"Zhengfeng Huang ,&nbsp;Beili Gong","doi":"10.1016/j.mechatronics.2024.103264","DOIUrl":"10.1016/j.mechatronics.2024.103264","url":null,"abstract":"<div><div>Accurate system modeling is the key to high-performance motor control. However, there usually exist nonlinear position-dependent cogging torque disturbances in motor systems, which makes classical linear system identification algorithms unavailable to such systems. Therefore, in this paper, a wavelet-packet-transform (WPT)-based preprocessing method is proposed to extract and attenuate the cogging torque disturbances of the identification data, so as to obtain an accurate linear model of the motor system by applying a classical identification algorithm without compensating the cogging torque in advance. Both the simulation and experiments show that the proposed method is a simple and efficient way to obtain a linear model for a motor with cogging torque disturbances.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103264"},"PeriodicalIF":3.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A joint acceleration planning method for inverse kinematics of manipulator based on second-order system with variable impedance 基于二阶可变阻抗系统的机械手逆运动学关节加速度规划方法
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2024-10-21 DOI: 10.1016/j.mechatronics.2024.103263
Mingda Ge , Hongzhe Jin , Hui Zhang , Jizhuang Fan , Jie Zhao
{"title":"A joint acceleration planning method for inverse kinematics of manipulator based on second-order system with variable impedance","authors":"Mingda Ge ,&nbsp;Hongzhe Jin ,&nbsp;Hui Zhang ,&nbsp;Jizhuang Fan ,&nbsp;Jie Zhao","doi":"10.1016/j.mechatronics.2024.103263","DOIUrl":"10.1016/j.mechatronics.2024.103263","url":null,"abstract":"<div><div>The paper presents an angular acceleration planning method for joint space of manipulator to achieve real-time tracking tasks under joint constraint. To improve the performance of the algorithm and ensure the joint limit, the proposed method establishes a Second-order System with Variable Impedance (SSVI). The Second-order System is introduced in the joint space through the joint angular acceleration in second derivative of kinematics. The impedance parameters vary with different states of joint and the variable impedance produced virtual repulsive force to ensure that the joint motions are within the specified ranges when they are close to limits. The damping impedance contained in the system can improve convergence speed and suppress system oscillation and vibration caused by factors such as the visual noise. Simulation and experiment results verify that the method is effective and has faster convergence speed and more smooth motion compared with other methods.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103263"},"PeriodicalIF":3.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRTF-MoeICP: A robust coarse-to-fine reflector-based LiDAR indoor positioning algorithm CRTF-MoeICP:基于反射器的鲁棒粗到细激光雷达室内定位算法
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2024-10-19 DOI: 10.1016/j.mechatronics.2024.103259
Ming Yao , Zhufeng Shao , Yunzhou Su , Dehao Wei , Fumin Zhang , Liping Wang
{"title":"CRTF-MoeICP: A robust coarse-to-fine reflector-based LiDAR indoor positioning algorithm","authors":"Ming Yao ,&nbsp;Zhufeng Shao ,&nbsp;Yunzhou Su ,&nbsp;Dehao Wei ,&nbsp;Fumin Zhang ,&nbsp;Liping Wang","doi":"10.1016/j.mechatronics.2024.103259","DOIUrl":"10.1016/j.mechatronics.2024.103259","url":null,"abstract":"<div><div>The reflector-based Light Detection and Ranging (LiDAR) positioning method is susceptible to environmental interferences, resulting in instability. This instability not only reduces movement accuracy but also poses safety hazards. To solve the above problems in the application of LiDAR sensors in the field of indoor positioning, we propose a <u>C</u>oarse <u>R</u>egistration algorithm based on the <u>T</u>riangular <u>F</u>eature (CRTF) and a fine registration algorithm based on <u>M</u>ulti-level <u>o</u>utlier <u>e</u>limination and <u>I</u>terative <u>C</u>losest <u>P</u>oint (MoeICP) for the reflector-based LiDAR positioning. The proposed coarse-to-fine positioning algorithm CRTF-MoeICP addresses the issue of reflector-based LiDAR positioning failure arising from the improper selection of the initial transformation matrix and outlier interference in indoor structured industrial environments. The experiment results show that the CRTF-MoeICP algorithm can ensure the stable registration of the LiDAR point cloud and the reflector map by completely removing all outliers, greatly improving the indoor positioning stability of LiDAR sensors. Besides, the proposed algorithm can be realized by LiDARs with different performance, and improve the static positioning repeatability to ±3 mm. The high precision and stable positioning results improve the motion accuracy, ensuring that the Automatic Guided Vehicle (AGV) can accurately and stably complete the handling task.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103259"},"PeriodicalIF":3.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel feedforward extended model reference adaptive control of PKMs: Design and real-time experiments PKM 的新型前馈扩展模型参考自适应控制:设计与实时实验
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2024-10-19 DOI: 10.1016/j.mechatronics.2024.103261
Youcef Fitas , Ahmed Chemori , Johann Lamaury , Thierry Roux
{"title":"A novel feedforward extended model reference adaptive control of PKMs: Design and real-time experiments","authors":"Youcef Fitas ,&nbsp;Ahmed Chemori ,&nbsp;Johann Lamaury ,&nbsp;Thierry Roux","doi":"10.1016/j.mechatronics.2024.103261","DOIUrl":"10.1016/j.mechatronics.2024.103261","url":null,"abstract":"<div><div>This paper presents a novel approach for controlling Parallel Kinematic Manipulators (PKMs) using a feedforward augmented Model Reference Adaptive Control (MRAC) scheme. The original direct MRAC approach lacks the knowledge of the dynamic model and does not ensure boundedness of the feedback gains. To overcome these limitations, our proposed approach incorporates a feedforward dynamic term to enhance the tracking performance, and a projection operator to guarantee the boundedness of the feedback gains. The proposed controller is validated through real-time experiments using a 6-Degrees-Of-Freedom (DOF) PKM, and is compared with the original direct MRAC and some state-of-the-art controllers in various scenarios, including nominal and robustness cases. The obtained experimental results demonstrate the superiority of the proposed approach in terms of trajectory tracking performances and adaptation efficiency.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103261"},"PeriodicalIF":3.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recover a moving rotor UAV without ground–air communications: System and control of a dual-stage tracking device 在没有地空通信的情况下回收移动旋翼无人机:双级跟踪装置的系统与控制
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2024-10-11 DOI: 10.1016/j.mechatronics.2024.103235
Jinge Si, Bin Li, Yongkang Xu, Liang Wang, Chencheng Deng, Junzheng Wang, Shoukun Wang
{"title":"Recover a moving rotor UAV without ground–air communications: System and control of a dual-stage tracking device","authors":"Jinge Si,&nbsp;Bin Li,&nbsp;Yongkang Xu,&nbsp;Liang Wang,&nbsp;Chencheng Deng,&nbsp;Junzheng Wang,&nbsp;Shoukun Wang","doi":"10.1016/j.mechatronics.2024.103235","DOIUrl":"10.1016/j.mechatronics.2024.103235","url":null,"abstract":"<div><div>Recovering a moving rotor unmanned aerial vehicle (UAV) using a single-stage dynamic tracking device poses a significant challenge, particularly without real-time communication between the two systems. This study presents a dual-stage tracking system comprising an unmanned ground vehicle (UGV) and a Stewart platform, aimed at dynamically tracking and recovering the UAV. Firstly, an observation algorithm combining Kalman filtering (KF) and curve fitting is designed to estimate and complete the drone’s states and predict its trajectory. Subsequently, a decoupled dual-stage tracking control structure is introduced, integrating two independent controlled subsystems. Specifically, in the UGV controller, the model predictive control (MPC) is employed to enhance dynamic tracking capabilities using absolute kinematics. A motion tracking algorithm based on relative kinematics was developed for the Stewart recovery platform to compensate for UGV tracking errors and improve tracking accuracy. Dynamic recovery simulations and experiments have been conducted to validate the feasibility and effectiveness of the proposed dual-stage tracking system. The results demonstrate the system’s capability to dynamically track and recover the drone without real-time communication in complex environments characterized by detection noise and target trajectory disturbances.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103235"},"PeriodicalIF":3.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信