Syed Kumayl Raza Moosavi , Muhammad Hamza Zafar , Filippo Sanfilippo
{"title":"Snake robots: A state-of-the-art review on design, locomotion, control, and real-world applications","authors":"Syed Kumayl Raza Moosavi , Muhammad Hamza Zafar , Filippo Sanfilippo","doi":"10.1016/j.mechatronics.2025.103418","DOIUrl":null,"url":null,"abstract":"<div><div>Snake robots have emerged as a transformative class of bio-inspired robotic systems, offering unparallelled adaptability in navigating complex unstructured terrains. Their limbless design, inspired by biological snakes, enables efficient movement across diverse environments, including rough terrains, confined spaces, and hazardous conditions where traditional wheeled or legged robots struggle. This review provides a comprehensive analysis of the design and development of snake robots, covering their locomotion strategies, mechanical configurations, sensor integration, control schemas, and actuation mechanisms. The review further explores the evolution of mechanical structures from rigid, soft, and hybrid designs, emphasising advancements in actuation and sensor technologies in enhancing adaptability and navigation. Applications of snake robots extend across various domains, including search and rescue (SAR), industrial inspection, and exploration of extreme environments. Despite significant progress, challenges such as optimising energy efficiency, improving environmental perception, and achieving real-time adaptability remain open research areas. This review serves as a foundational reference for researchers and engineers working towards advancing the next generation of snake robots, paving the way for their integration into real-world applications.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"112 ","pages":"Article 103418"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825001278","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Snake robots have emerged as a transformative class of bio-inspired robotic systems, offering unparallelled adaptability in navigating complex unstructured terrains. Their limbless design, inspired by biological snakes, enables efficient movement across diverse environments, including rough terrains, confined spaces, and hazardous conditions where traditional wheeled or legged robots struggle. This review provides a comprehensive analysis of the design and development of snake robots, covering their locomotion strategies, mechanical configurations, sensor integration, control schemas, and actuation mechanisms. The review further explores the evolution of mechanical structures from rigid, soft, and hybrid designs, emphasising advancements in actuation and sensor technologies in enhancing adaptability and navigation. Applications of snake robots extend across various domains, including search and rescue (SAR), industrial inspection, and exploration of extreme environments. Despite significant progress, challenges such as optimising energy efficiency, improving environmental perception, and achieving real-time adaptability remain open research areas. This review serves as a foundational reference for researchers and engineers working towards advancing the next generation of snake robots, paving the way for their integration into real-world applications.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.