Lie Guo , Jiaqing Zhao , Longxin Guan , Jiahao Wang , Pingshu Ge , Linli Xu
{"title":"动态触发DYC干预的多轴分布式驱动车辆协调控制及基于kkt的转矩优化分配","authors":"Lie Guo , Jiaqing Zhao , Longxin Guan , Jiahao Wang , Pingshu Ge , Linli Xu","doi":"10.1016/j.mechatronics.2025.103397","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-axle distributed drive vehicles, characterized by over-actuation, internal dynamics, and nonlinear external disturbances, frequently encounter coordination challenges in lateral path tracking, yaw stability intervention, and longitudinal speed control. These issues can significantly degrade overall control performance, particularly under complex driving conditions. To address them, this paper proposes a coordinated control framework integrating path tracking, yaw stability intervention, longitudinal drive control, and optimal torque distribution. First, a robust path tracking controller based on a linear parameter-varying (LPV) dynamic model is designed and a longitudinal speed controller using a linear sliding mode approach are designed. Subsequently, a direct yaw-moment control (DYC) strategy based on nonsingular terminal sliding mode control (NTSMC) with nonlinear dynamic triggering is introduced to mitigate performance degradation induced by excessive interventions. Finally, an optimal torque distribution method based on the Karush–Kuhn–Tucker (KKT) conditions is developed to ensure the feasibility of the solutions. The effectiveness and superiority of the proposed coordination framework are validated through hardware-in-the-loop (HiL) experiments.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"111 ","pages":"Article 103397"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordination control of multi-axle distributed drive vehicle with dynamically-triggered DYC intervention and KKT-based torque optimization distribution\",\"authors\":\"Lie Guo , Jiaqing Zhao , Longxin Guan , Jiahao Wang , Pingshu Ge , Linli Xu\",\"doi\":\"10.1016/j.mechatronics.2025.103397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-axle distributed drive vehicles, characterized by over-actuation, internal dynamics, and nonlinear external disturbances, frequently encounter coordination challenges in lateral path tracking, yaw stability intervention, and longitudinal speed control. These issues can significantly degrade overall control performance, particularly under complex driving conditions. To address them, this paper proposes a coordinated control framework integrating path tracking, yaw stability intervention, longitudinal drive control, and optimal torque distribution. First, a robust path tracking controller based on a linear parameter-varying (LPV) dynamic model is designed and a longitudinal speed controller using a linear sliding mode approach are designed. Subsequently, a direct yaw-moment control (DYC) strategy based on nonsingular terminal sliding mode control (NTSMC) with nonlinear dynamic triggering is introduced to mitigate performance degradation induced by excessive interventions. Finally, an optimal torque distribution method based on the Karush–Kuhn–Tucker (KKT) conditions is developed to ensure the feasibility of the solutions. The effectiveness and superiority of the proposed coordination framework are validated through hardware-in-the-loop (HiL) experiments.</div></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"111 \",\"pages\":\"Article 103397\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415825001060\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825001060","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Coordination control of multi-axle distributed drive vehicle with dynamically-triggered DYC intervention and KKT-based torque optimization distribution
Multi-axle distributed drive vehicles, characterized by over-actuation, internal dynamics, and nonlinear external disturbances, frequently encounter coordination challenges in lateral path tracking, yaw stability intervention, and longitudinal speed control. These issues can significantly degrade overall control performance, particularly under complex driving conditions. To address them, this paper proposes a coordinated control framework integrating path tracking, yaw stability intervention, longitudinal drive control, and optimal torque distribution. First, a robust path tracking controller based on a linear parameter-varying (LPV) dynamic model is designed and a longitudinal speed controller using a linear sliding mode approach are designed. Subsequently, a direct yaw-moment control (DYC) strategy based on nonsingular terminal sliding mode control (NTSMC) with nonlinear dynamic triggering is introduced to mitigate performance degradation induced by excessive interventions. Finally, an optimal torque distribution method based on the Karush–Kuhn–Tucker (KKT) conditions is developed to ensure the feasibility of the solutions. The effectiveness and superiority of the proposed coordination framework are validated through hardware-in-the-loop (HiL) experiments.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.