Ryan G. Coe, Giorgio Bacelli, Daniel Gaebele, Alicia Keow, Dominic Forbush
{"title":"双共轭阻抗匹配波能转换器的协同设计","authors":"Ryan G. Coe, Giorgio Bacelli, Daniel Gaebele, Alicia Keow, Dominic Forbush","doi":"10.1016/j.mechatronics.2025.103395","DOIUrl":null,"url":null,"abstract":"<div><div>As with other oscillatory power conversion systems, the design of wave energy converters can be understood as an impedance matching problem. By representing the wave energy converter as a multi-port network, two separate but related impedance matching conditions can be established. Satisfying these conditions maximizes power transfer to the load. In practice, these impedance matching conditions may be used to influence the design of the system (including the hull, power take-off, controller, mooring, etc.). To this end, this paper considers some example applications of wave energy converter design with the help of the impedance matching framework.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"111 ","pages":"Article 103395"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-design of a wave energy converter through bi-conjugate impedance matching\",\"authors\":\"Ryan G. Coe, Giorgio Bacelli, Daniel Gaebele, Alicia Keow, Dominic Forbush\",\"doi\":\"10.1016/j.mechatronics.2025.103395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As with other oscillatory power conversion systems, the design of wave energy converters can be understood as an impedance matching problem. By representing the wave energy converter as a multi-port network, two separate but related impedance matching conditions can be established. Satisfying these conditions maximizes power transfer to the load. In practice, these impedance matching conditions may be used to influence the design of the system (including the hull, power take-off, controller, mooring, etc.). To this end, this paper considers some example applications of wave energy converter design with the help of the impedance matching framework.</div></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"111 \",\"pages\":\"Article 103395\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415825001047\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825001047","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Co-design of a wave energy converter through bi-conjugate impedance matching
As with other oscillatory power conversion systems, the design of wave energy converters can be understood as an impedance matching problem. By representing the wave energy converter as a multi-port network, two separate but related impedance matching conditions can be established. Satisfying these conditions maximizes power transfer to the load. In practice, these impedance matching conditions may be used to influence the design of the system (including the hull, power take-off, controller, mooring, etc.). To this end, this paper considers some example applications of wave energy converter design with the help of the impedance matching framework.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.