Control-oriented modelling and experimental validation of a controllable multichamber air spring suspension

IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Sabrina Milani, Gabriele Marini, Giulio Panzani, Matteo Corno, Sergio M. Savaresi
{"title":"Control-oriented modelling and experimental validation of a controllable multichamber air spring suspension","authors":"Sabrina Milani,&nbsp;Gabriele Marini,&nbsp;Giulio Panzani,&nbsp;Matteo Corno,&nbsp;Sergio M. Savaresi","doi":"10.1016/j.mechatronics.2025.103406","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the characterization and validation of a multichamber air spring, a pneumatic suspension system comprising a primary chamber linked to multiple auxiliary air reservoirs through electronically controlled valves. Multichamber air springs represent complex electromechanical systems, where valve control and chamber states significantly influence the suspension’s equivalent stiffness. The primary objective of this study is to introduce a novel control-oriented mathematical model for the air spring that more accurately captures the intricate dynamical behaviours than traditional models. By incorporating the dynamics of air mass flow through the valves, the proposed model captures the elastic force during both the opening and closing of the valves, while also accounting for damping phenomena induced by internal friction. Experimental validation is conducted using a suspension test bench, demonstrating that the simulated forces match the measured values across various tests, including realistic driving scenarios characterized by high-frequency stiffness modulation on off-road terrains. This study illustrates how approaching the dynamics from a control-oriented perspective paves the way for enhanced vehicle dynamics control.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"112 ","pages":"Article 103406"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825001151","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the characterization and validation of a multichamber air spring, a pneumatic suspension system comprising a primary chamber linked to multiple auxiliary air reservoirs through electronically controlled valves. Multichamber air springs represent complex electromechanical systems, where valve control and chamber states significantly influence the suspension’s equivalent stiffness. The primary objective of this study is to introduce a novel control-oriented mathematical model for the air spring that more accurately captures the intricate dynamical behaviours than traditional models. By incorporating the dynamics of air mass flow through the valves, the proposed model captures the elastic force during both the opening and closing of the valves, while also accounting for damping phenomena induced by internal friction. Experimental validation is conducted using a suspension test bench, demonstrating that the simulated forces match the measured values across various tests, including realistic driving scenarios characterized by high-frequency stiffness modulation on off-road terrains. This study illustrates how approaching the dynamics from a control-oriented perspective paves the way for enhanced vehicle dynamics control.
可控多腔空气弹簧悬架的面向控制建模与实验验证
本文介绍了多室空气弹簧的特性和验证,多室空气弹簧是一种气动悬架系统,包括一个主室,通过电子控制阀与多个辅助储气罐相连。多室空气弹簧代表复杂的机电系统,其中阀门控制和腔室状态显著影响悬架的等效刚度。本研究的主要目的是为空气弹簧引入一种新的面向控制的数学模型,该模型比传统模型更准确地捕捉复杂的动力学行为。通过结合通过阀门的空气质量流动的动力学,所提出的模型捕获了阀门打开和关闭期间的弹性力,同时也考虑了内摩擦引起的阻尼现象。利用悬架试验台进行了实验验证,表明模拟力与各种测试的实测值相匹配,包括在越野地形上以高频刚度调制为特征的真实驾驶场景。本研究说明了如何从面向控制的角度接近动力学,为增强车辆动力学控制铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechatronics
Mechatronics 工程技术-工程:电子与电气
CiteScore
5.90
自引率
9.10%
发文量
0
审稿时长
109 days
期刊介绍: Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信