Neuroscientist最新文献

筛选
英文 中文
Neurite density in autism: new lessons from MRI. 自闭症的神经突密度:MRI的新教训。
IF 3.5 3区 医学
Neuroscientist Pub Date : 2025-08-01 Epub Date: 2025-07-16 DOI: 10.1177/10738584251358733a
{"title":"Neurite density in autism: new lessons from MRI.","authors":"","doi":"10.1177/10738584251358733a","DOIUrl":"https://doi.org/10.1177/10738584251358733a","url":null,"abstract":"","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"31 4","pages":"333-334"},"PeriodicalIF":3.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144643967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping emotional responses across the brain. 绘制整个大脑的情绪反应图。
IF 3.5 3区 医学
Neuroscientist Pub Date : 2025-08-01 Epub Date: 2025-07-16 DOI: 10.1177/10738584251358734
{"title":"Mapping emotional responses across the brain.","authors":"","doi":"10.1177/10738584251358734","DOIUrl":"https://doi.org/10.1177/10738584251358734","url":null,"abstract":"","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"31 4","pages":"335"},"PeriodicalIF":3.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144643965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuromodulation of the Cingulate Cortex for Pain. 扣带皮层对疼痛的神经调节。
IF 3.5 3区 医学
Neuroscientist Pub Date : 2025-06-26 DOI: 10.1177/10738584251337652
Andrew Strohman, Wynn Legon
{"title":"Neuromodulation of the Cingulate Cortex for Pain.","authors":"Andrew Strohman, Wynn Legon","doi":"10.1177/10738584251337652","DOIUrl":"https://doi.org/10.1177/10738584251337652","url":null,"abstract":"<p><p>The subgenual (sACC) and pregenual (pACC) anterior cingulate and anterior midcingulate (aMCC) cortices are structurally and functionally distinct subregions of the cingulate cortex with critical roles in pain processing. These regions may be promising therapeutic targets using non-invasive neuromodulation techniques, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES), and low-intensity focused ultrasound (LIFU). In this review, we synthesize emerging evidence on the function and connectivity of these subregions in both acute and chronic pain, highlighting their differential roles in the sensory, affective, and autonomic contributions to pain processing. We compare the strengths and limitations of the different non-invasive neuromodulatory methods for accessing these deep midline structures and examine how technique-specific and target-specific effects influence analgesic outcomes. We also explore the influence of placebo mechanisms and stimulation context on therapeutic effects. Finally, we discuss emerging strategies such as personalized connectivity-based targeting to overcome anatomical and technical limitations to advance precision non-invasive neuromodulation for pain.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"10738584251337652"},"PeriodicalIF":3.5,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144509175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gustav Oppenheim (1882-1937) and the Discovery of Cerebral Amyloid Angiopathy. 古斯塔夫-奥本海姆(1882-1937 年)与脑淀粉样血管病的发现。
IF 3.5 3区 医学
Neuroscientist Pub Date : 2025-06-01 Epub Date: 2024-05-14 DOI: 10.1177/10738584241251828
Anthony Maurice Ness, Judd Aiken
{"title":"Gustav Oppenheim (1882-1937) and the Discovery of Cerebral Amyloid Angiopathy.","authors":"Anthony Maurice Ness, Judd Aiken","doi":"10.1177/10738584241251828","DOIUrl":"10.1177/10738584241251828","url":null,"abstract":"<p><p>The discovery of cerebral amyloid angiopathy (CAA) is frequently attributed to Dr. Gustav Oppenheim-a man who has been largely passed over in history. Oppenheim's clinical and neuropathologic research covered a variety of disorders, but his name is best known for his work on senile dementia and CAA. Although Oppenheim was in fact not the first to discover CAA, his neuropathologic observations and inferences on neurodegenerative disease proved to be remarkably faithful to our modern understanding of neurodegenerative diseases. As a neurologist, he served in the First World War and was later subjected to religious persecutions in the leadup to the Holocaust but was not fortunate enough to emigrate before his death. The life, social impact, and previously overlooked contributions to science and medicine by Oppenheim are detailed.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"225-233"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond simple organoids: An assembloid model of the human spinothalamic tract in a dish. 超越简单的类器官:人类脊髓丘脑束在培养皿中的组装体模型。
IF 3.5 3区 医学
Neuroscientist Pub Date : 2025-06-01 Epub Date: 2025-05-26 DOI: 10.1177/10738584251344119
{"title":"Beyond simple organoids: An assembloid model of the human spinothalamic tract in a dish.","authors":"","doi":"10.1177/10738584251344119","DOIUrl":"https://doi.org/10.1177/10738584251344119","url":null,"abstract":"","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"31 3","pages":"221"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144144221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vagus Nerve and Gut-Brain Communication. 迷走神经与肠脑交流
IF 3.5 3区 医学
Neuroscientist Pub Date : 2025-06-01 Epub Date: 2024-07-23 DOI: 10.1177/10738584241259702
Yiyang Wang, Chenxi Duan, Xinyi Du, Ying Zhu, Lihua Wang, Jun Hu, Yanhong Sun
{"title":"Vagus Nerve and Gut-Brain Communication.","authors":"Yiyang Wang, Chenxi Duan, Xinyi Du, Ying Zhu, Lihua Wang, Jun Hu, Yanhong Sun","doi":"10.1177/10738584241259702","DOIUrl":"10.1177/10738584241259702","url":null,"abstract":"<p><p>The vagus nerve, as an important component of the gut-brain axis, plays a crucial role in the communication between the gut and brain. It influences food intake, fat metabolism, and emotion by regulating the gut-brain axis, which is closely associated with the development of gastrointestinal, psychiatric, and metabolism-related disorders. In recent years, significant progress has been made in understanding the vagus-mediated regulatory pathway, highlighting its profound implications in the development of many diseases. Here, we summarize the latest advancements in vagus-mediated gut-brain pathways and the novel interventions targeting the vagus nerve. This will provide valuable insights for future research on treatment of obesity and gastrointestinal and depressive disorders based on vagus nerve stimulation.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"262-278"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain network organization in depression. 抑郁症的大脑网络组织。
IF 3.5 3区 医学
Neuroscientist Pub Date : 2025-06-01 Epub Date: 2025-05-26 DOI: 10.1177/10738584251344118
{"title":"Brain network organization in depression.","authors":"","doi":"10.1177/10738584251344118","DOIUrl":"https://doi.org/10.1177/10738584251344118","url":null,"abstract":"","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"31 3","pages":"224"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144144263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empathic pain: Underlying neural mechanism. 共鸣痛:潜在的神经机制
IF 3.5 3区 医学
Neuroscientist Pub Date : 2025-06-01 Epub Date: 2024-10-04 DOI: 10.1177/10738584241283435
Ming-Ming Zhang, Tao Chen
{"title":"Empathic pain: Underlying neural mechanism.","authors":"Ming-Ming Zhang, Tao Chen","doi":"10.1177/10738584241283435","DOIUrl":"10.1177/10738584241283435","url":null,"abstract":"<p><p>Empathy is usually regarded as the ability to perceive the emotional state of others, which is an altruistic motivation to promote prosocial behavior and thus plays a key role in human life and social development. Empathic pain-the capacity to feel and understand the pain of others-constitutes a significant aspect in the study of empathy behaviors. For an extended duration, investigations into empathic pain have predominantly centered on human neuroimaging studies. Fortunately, recent advancements have witnessed the utilization of animal models in the exploration of the fundamental neural underpinnings of empathic pain. There is substantial evidence implicating multiple brain regions and neural networks in the generation and maintenance of empathic pain. Nevertheless, further elucidation of the neural mechanisms underlying empathic pain is warranted. This review provides a concise overview of prior studies on the neural mechanisms of empathic pain, outlining the pertinent brain regions, neural pathways, synaptic mechanisms, and associated molecules while also delving into future prospects.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"296-307"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion. 探索运动区在自主运动和运动中的一致作用
IF 3.5 3区 医学
Neuroscientist Pub Date : 2025-06-01 Epub Date: 2024-07-23 DOI: 10.1177/10738584241263758
Nicolas Fortier-Lebel, Toshi Nakajima
{"title":"Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion.","authors":"Nicolas Fortier-Lebel, Toshi Nakajima","doi":"10.1177/10738584241263758","DOIUrl":"10.1177/10738584241263758","url":null,"abstract":"<p><p>Multiple cortical motor areas are critically involved in the voluntary control of discrete movement (e.g., reaching) and gait. Here, we outline experimental findings in nonhuman primates with clinical reports and research in humans that explain characteristic movement control mechanisms in the primary, supplementary, and presupplementary motor areas, as well as in the dorsal premotor area. We then focus on single-neuron activity recorded while monkeys performed motor sequences consisting of multiple discrete movements, and we consider how area-specific control mechanisms may contribute to the performance of complex movements. Following this, we explore the motor areas in cats that we have considered as analogs of those in primates based on similarities in their cortical surface topology, anatomic connections, microstimulation effects, and activity patterns. Emphasizing that discrete movement and gait modification entail similar control mechanisms, we argue that single-neuron activity in each area of the cat during gait modification is compatible with the function ascribed to the activity in the corresponding area in primates, recorded during the performance of discrete movements. The findings that demonstrate the premotor areas' contribution to locomotion, currently unique to the cat model, should offer highly valuable insights into the control mechanisms of locomotion in primates, including humans.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"279-295"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating Central Oxytocin Transport: Known Realms and Uncharted Territories. 中枢催产素运输导航:已知领域和未知领域。
IF 3.5 3区 医学
Neuroscientist Pub Date : 2025-06-01 Epub Date: 2024-08-07 DOI: 10.1177/10738584241268754
Deniz Parmaksiz, Yongsoo Kim
{"title":"Navigating Central Oxytocin Transport: Known Realms and Uncharted Territories.","authors":"Deniz Parmaksiz, Yongsoo Kim","doi":"10.1177/10738584241268754","DOIUrl":"10.1177/10738584241268754","url":null,"abstract":"<p><p>Complex mechanisms govern the transport and action of oxytocin (Oxt), a neuropeptide and hormone that mediates diverse physiologic processes. While Oxt exerts site-specific and rapid effects in the brain via axonal and somatodendritic release, volume transmission via CSF and the neurovascular interface can act as an additional mechanism to distribute Oxt signals across distant brain regions on a slower timescale. This review focuses on modes of Oxt transport and action in the CNS, with particular emphasis on the roles of perivascular spaces, the blood-brain barrier (BBB), and circumventricular organs in coordinating the triadic interaction among circulating blood, CSF, and parenchyma. Perivascular spaces, critical conduits for CSF flow, play a pivotal role in Oxt diffusion and distribution within the CNS and reciprocally undergo Oxt-mediated structural and functional reconstruction. While the BBB modulates the movement of Oxt between systemic and cerebral circulation in a majority of brain regions, circumventricular organs without a functional BBB can allow for diffusion, monitoring, and feedback regulation of bloodborne peripheral signals such as Oxt. Recognition of these additional transport mechanisms provides enhanced insight into the systemic propagation and regulation of Oxt activity.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"234-261"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信