NeuroscientistPub Date : 2025-06-01Epub Date: 2024-05-14DOI: 10.1177/10738584241251828
Anthony Maurice Ness, Judd Aiken
{"title":"Gustav Oppenheim (1882-1937) and the Discovery of Cerebral Amyloid Angiopathy.","authors":"Anthony Maurice Ness, Judd Aiken","doi":"10.1177/10738584241251828","DOIUrl":"10.1177/10738584241251828","url":null,"abstract":"<p><p>The discovery of cerebral amyloid angiopathy (CAA) is frequently attributed to Dr. Gustav Oppenheim-a man who has been largely passed over in history. Oppenheim's clinical and neuropathologic research covered a variety of disorders, but his name is best known for his work on senile dementia and CAA. Although Oppenheim was in fact not the first to discover CAA, his neuropathologic observations and inferences on neurodegenerative disease proved to be remarkably faithful to our modern understanding of neurodegenerative diseases. As a neurologist, he served in the First World War and was later subjected to religious persecutions in the leadup to the Holocaust but was not fortunate enough to emigrate before his death. The life, social impact, and previously overlooked contributions to science and medicine by Oppenheim are detailed.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"225-233"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroscientistPub Date : 2025-06-01Epub Date: 2025-05-26DOI: 10.1177/10738584251344119
{"title":"Beyond simple organoids: An assembloid model of the human spinothalamic tract in a dish.","authors":"","doi":"10.1177/10738584251344119","DOIUrl":"https://doi.org/10.1177/10738584251344119","url":null,"abstract":"","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"31 3","pages":"221"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144144221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroscientistPub Date : 2025-06-01Epub Date: 2024-07-23DOI: 10.1177/10738584241259702
Yiyang Wang, Chenxi Duan, Xinyi Du, Ying Zhu, Lihua Wang, Jun Hu, Yanhong Sun
{"title":"Vagus Nerve and Gut-Brain Communication.","authors":"Yiyang Wang, Chenxi Duan, Xinyi Du, Ying Zhu, Lihua Wang, Jun Hu, Yanhong Sun","doi":"10.1177/10738584241259702","DOIUrl":"10.1177/10738584241259702","url":null,"abstract":"<p><p>The vagus nerve, as an important component of the gut-brain axis, plays a crucial role in the communication between the gut and brain. It influences food intake, fat metabolism, and emotion by regulating the gut-brain axis, which is closely associated with the development of gastrointestinal, psychiatric, and metabolism-related disorders. In recent years, significant progress has been made in understanding the vagus-mediated regulatory pathway, highlighting its profound implications in the development of many diseases. Here, we summarize the latest advancements in vagus-mediated gut-brain pathways and the novel interventions targeting the vagus nerve. This will provide valuable insights for future research on treatment of obesity and gastrointestinal and depressive disorders based on vagus nerve stimulation.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"262-278"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroscientistPub Date : 2025-06-01Epub Date: 2024-10-04DOI: 10.1177/10738584241283435
Ming-Ming Zhang, Tao Chen
{"title":"Empathic pain: Underlying neural mechanism.","authors":"Ming-Ming Zhang, Tao Chen","doi":"10.1177/10738584241283435","DOIUrl":"10.1177/10738584241283435","url":null,"abstract":"<p><p>Empathy is usually regarded as the ability to perceive the emotional state of others, which is an altruistic motivation to promote prosocial behavior and thus plays a key role in human life and social development. Empathic pain-the capacity to feel and understand the pain of others-constitutes a significant aspect in the study of empathy behaviors. For an extended duration, investigations into empathic pain have predominantly centered on human neuroimaging studies. Fortunately, recent advancements have witnessed the utilization of animal models in the exploration of the fundamental neural underpinnings of empathic pain. There is substantial evidence implicating multiple brain regions and neural networks in the generation and maintenance of empathic pain. Nevertheless, further elucidation of the neural mechanisms underlying empathic pain is warranted. This review provides a concise overview of prior studies on the neural mechanisms of empathic pain, outlining the pertinent brain regions, neural pathways, synaptic mechanisms, and associated molecules while also delving into future prospects.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"296-307"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroscientistPub Date : 2025-06-01Epub Date: 2024-07-23DOI: 10.1177/10738584241263758
Nicolas Fortier-Lebel, Toshi Nakajima
{"title":"Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion.","authors":"Nicolas Fortier-Lebel, Toshi Nakajima","doi":"10.1177/10738584241263758","DOIUrl":"10.1177/10738584241263758","url":null,"abstract":"<p><p>Multiple cortical motor areas are critically involved in the voluntary control of discrete movement (e.g., reaching) and gait. Here, we outline experimental findings in nonhuman primates with clinical reports and research in humans that explain characteristic movement control mechanisms in the primary, supplementary, and presupplementary motor areas, as well as in the dorsal premotor area. We then focus on single-neuron activity recorded while monkeys performed motor sequences consisting of multiple discrete movements, and we consider how area-specific control mechanisms may contribute to the performance of complex movements. Following this, we explore the motor areas in cats that we have considered as analogs of those in primates based on similarities in their cortical surface topology, anatomic connections, microstimulation effects, and activity patterns. Emphasizing that discrete movement and gait modification entail similar control mechanisms, we argue that single-neuron activity in each area of the cat during gait modification is compatible with the function ascribed to the activity in the corresponding area in primates, recorded during the performance of discrete movements. The findings that demonstrate the premotor areas' contribution to locomotion, currently unique to the cat model, should offer highly valuable insights into the control mechanisms of locomotion in primates, including humans.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"279-295"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroscientistPub Date : 2025-06-01Epub Date: 2024-08-07DOI: 10.1177/10738584241268754
Deniz Parmaksiz, Yongsoo Kim
{"title":"Navigating Central Oxytocin Transport: Known Realms and Uncharted Territories.","authors":"Deniz Parmaksiz, Yongsoo Kim","doi":"10.1177/10738584241268754","DOIUrl":"10.1177/10738584241268754","url":null,"abstract":"<p><p>Complex mechanisms govern the transport and action of oxytocin (Oxt), a neuropeptide and hormone that mediates diverse physiologic processes. While Oxt exerts site-specific and rapid effects in the brain via axonal and somatodendritic release, volume transmission via CSF and the neurovascular interface can act as an additional mechanism to distribute Oxt signals across distant brain regions on a slower timescale. This review focuses on modes of Oxt transport and action in the CNS, with particular emphasis on the roles of perivascular spaces, the blood-brain barrier (BBB), and circumventricular organs in coordinating the triadic interaction among circulating blood, CSF, and parenchyma. Perivascular spaces, critical conduits for CSF flow, play a pivotal role in Oxt diffusion and distribution within the CNS and reciprocally undergo Oxt-mediated structural and functional reconstruction. While the BBB modulates the movement of Oxt between systemic and cerebral circulation in a majority of brain regions, circumventricular organs without a functional BBB can allow for diffusion, monitoring, and feedback regulation of bloodborne peripheral signals such as Oxt. Recognition of these additional transport mechanisms provides enhanced insight into the systemic propagation and regulation of Oxt activity.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"234-261"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroscientistPub Date : 2025-06-01Epub Date: 2024-09-24DOI: 10.1177/10738584241271414
Pishan Chang, Marta Pérez-González, Jessica Constable, Daniel Bush, Karen Cleverley, Victor L J Tybulewicz, Elizabeth M C Fisher, Matthew C Walker
{"title":"Neuronal oscillations in cognition: Down syndrome as a model of mouse to human translation.","authors":"Pishan Chang, Marta Pérez-González, Jessica Constable, Daniel Bush, Karen Cleverley, Victor L J Tybulewicz, Elizabeth M C Fisher, Matthew C Walker","doi":"10.1177/10738584241271414","DOIUrl":"10.1177/10738584241271414","url":null,"abstract":"<p><p>Down syndrome (DS), a prevalent cognitive disorder resulting from trisomy of human chromosome 21 (Hsa21), poses a significant global health concern. Affecting approximately 1 in 800 live births worldwide, DS is the leading genetic cause of intellectual disability and a major predisposing factor for early-onset Alzheimer's dementia. The estimated global population of individuals with DS is 6 million, with increasing prevalence due to advances in DS health care. Global efforts are dedicated to unraveling the mechanisms behind the varied clinical outcomes in DS. Recent studies on DS mouse models reveal disrupted neuronal circuits, providing insights into DS pathologies. Yet, translating these findings to humans faces challenges due to limited systematic electrophysiological analyses directly comparing human and mouse. Additionally, disparities in experimental procedures between the two species pose hurdles to successful translation. This review provides a concise overview of neuronal oscillations in human and rodent cognition. Focusing on recent DS mouse model studies, we highlight disruptions in associated brain function. We discuss various electrophysiological paradigms and suggest avenues for exploring molecular dysfunctions contributing to DS-related cognitive impairments. Deciphering neuronal oscillation intricacies holds promise for targeted therapies to alleviate cognitive disabilities in DS individuals.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"308-325"},"PeriodicalIF":3.5,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuroscientistPub Date : 2025-05-29DOI: 10.1177/10738584251337664
Kohgaku Eguchi
{"title":"Phosphoinositides: Nanoscale Effects on Neuronal Membranes.","authors":"Kohgaku Eguchi","doi":"10.1177/10738584251337664","DOIUrl":"https://doi.org/10.1177/10738584251337664","url":null,"abstract":"<p><p>Phosphoinositides (PIs) are essential regulators of neuronal function, playing pivotal roles in processes such as synaptic transmission, membrane excitability, and long-term synaptic plasticity. The seven PI isoforms, including PI(4)P, PI(4,5)P<sub>2</sub>, and PI(3,4,5)P<sub>2</sub>, exhibit distinct subcellular distributions that are tightly regulated by specific kinases and phosphatases. These isoforms contribute to key neuronal processes by modulating protein interactions and signaling pathways. Recent advances in visualization techniques, such as biosensor-based live imaging and SDS-digested freeze-fracture replica labeling, have provided new insights into the spatial distributions and dynamic behaviors of PI isoforms in neurons, particularly at synapses.However, significant questions remain, such as how specific PI isoforms coordinate signaling events in distinct subcellular compartments and how these lipids influence critical neuronal processes like vesicular trafficking and synaptic plasticity. Addressing these challenges will require the continued development of advanced imaging technologies, which are essential for mapping nanoscale distributions of PIs and their dynamic roles in neuronal processes. Here, I will review current findings, advancements in visualization methodologies, and key research directions. This review will be helpful for understanding the roles of PIs in neuronal physiology, their broad impacts on neuronal signaling, and the technological breakthroughs needed to uncover these complex processes.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"10738584251337664"},"PeriodicalIF":3.5,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144175235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}