Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion.

IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY
Nicolas Fortier-Lebel, Toshi Nakajima
{"title":"Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion.","authors":"Nicolas Fortier-Lebel, Toshi Nakajima","doi":"10.1177/10738584241263758","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple cortical motor areas are critically involved in the voluntary control of discrete movement (e.g., reaching) and gait. Here, we outline experimental findings in nonhuman primates with clinical reports and research in humans that explain characteristic movement control mechanisms in the primary, supplementary, and presupplementary motor areas, as well as in the dorsal premotor area. We then focus on single-neuron activity recorded while monkeys performed motor sequences consisting of multiple discrete movements, and we consider how area-specific control mechanisms may contribute to the performance of complex movements. Following this, we explore the motor areas in cats that we have considered as analogs of those in primates based on similarities in their cortical surface topology, anatomic connections, microstimulation effects, and activity patterns. Emphasizing that discrete movement and gait modification entail similar control mechanisms, we argue that single-neuron activity in each area of the cat during gait modification is compatible with the function ascribed to the activity in the corresponding area in primates, recorded during the performance of discrete movements. The findings that demonstrate the premotor areas' contribution to locomotion, currently unique to the cat model, should offer highly valuable insights into the control mechanisms of locomotion in primates, including humans.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"10738584241263758"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscientist","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10738584241263758","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple cortical motor areas are critically involved in the voluntary control of discrete movement (e.g., reaching) and gait. Here, we outline experimental findings in nonhuman primates with clinical reports and research in humans that explain characteristic movement control mechanisms in the primary, supplementary, and presupplementary motor areas, as well as in the dorsal premotor area. We then focus on single-neuron activity recorded while monkeys performed motor sequences consisting of multiple discrete movements, and we consider how area-specific control mechanisms may contribute to the performance of complex movements. Following this, we explore the motor areas in cats that we have considered as analogs of those in primates based on similarities in their cortical surface topology, anatomic connections, microstimulation effects, and activity patterns. Emphasizing that discrete movement and gait modification entail similar control mechanisms, we argue that single-neuron activity in each area of the cat during gait modification is compatible with the function ascribed to the activity in the corresponding area in primates, recorded during the performance of discrete movements. The findings that demonstrate the premotor areas' contribution to locomotion, currently unique to the cat model, should offer highly valuable insights into the control mechanisms of locomotion in primates, including humans.

探索运动区在自主运动和运动中的一致作用
多个皮层运动区在离散运动(如伸手)和步态的自主控制中起着至关重要的作用。在此,我们概述了非人灵长类动物的实验结果、临床报告和人类研究,这些结果解释了初级、辅助和前辅助运动区以及背侧前运动区的特征性运动控制机制。然后,我们将重点放在猴子执行由多个离散动作组成的运动序列时记录到的单神经元活动上,并考虑特定区域的控制机制可能如何促进复杂动作的执行。随后,我们探讨了猫的运动区,根据其皮层表面拓扑、解剖连接、微刺激效应和活动模式的相似性,我们认为猫的运动区与灵长类动物的运动区类似。我们强调离散运动和步态改变需要类似的控制机制,并认为猫在步态改变过程中每个区域的单神经元活动与灵长类动物在进行离散运动时记录到的相应区域活动的功能是一致的。这些研究结果表明了前运动区对运动的贡献,这在目前的猫模型中是独一无二的,这些研究结果将对包括人类在内的灵长类动物的运动控制机制提供非常有价值的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscientist
Neuroscientist 医学-临床神经学
CiteScore
11.50
自引率
0.00%
发文量
68
期刊介绍: Edited by Stephen G. Waxman, The Neuroscientist (NRO) reviews and evaluates the noteworthy advances and key trends in molecular, cellular, developmental, behavioral systems, and cognitive neuroscience in a unique disease-relevant format. Aimed at basic neuroscientists, neurologists, neurosurgeons, and psychiatrists in research, academic, and clinical settings, The Neuroscientist reviews and updates the most important new and emerging basic and clinical neuroscience research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信