{"title":"Development of a metal-organic framework-based nanosensor for determination of cyclosporine in plasma samples","authors":"Reza Moharami, Zahra Karimzadeh, Zahra Golsanamlu, Afshin Gharakhani, Elaheh Rahimpour, Abolghasem Jouyban","doi":"10.1186/s13065-025-01456-8","DOIUrl":"10.1186/s13065-025-01456-8","url":null,"abstract":"<div><p>According to the narrow therapeutic range and multiple adverse effects of cyclosporine and the need for its therapeutic drug monitoring (TDM), in this study, an efficient zeolitic imidazolate framework-8 metal-organic framework (ZIF-8 MOF) based nanoprobe was designed for simple, rapid and high sensitive its quantification in plasma samples. After the successful synthesis of the ZIF-8 MOF, under the optimum condition, the fluorescence emission of ZIF-8 MOF, measured at an excitation wavelength of 370 nm and an emission wavelength of 417 nm, was enhanced with increasing cyclosporine concentration, due to the specific interactions between cyclosporine and the nanoprobe, including hydrogen bonding and hydrophobic effects. The nanoprobe showed a linear correlation between the analytical response and cyclosporine concentration in the concentration range of 0.01–1.0 µg mL<sup>− 1</sup>, with a detection limit of 0.003 µg mL<sup>− 1</sup>. Acceptable precision was achieved, evidenced by intra-day and inter-day relative standard deviations of 0.4% and 0.5%, respectively. Recovery between 97.1% and 102.1% in plasma samples indicated the method’s reliability in practical applications.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01456-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-03-26DOI: 10.1186/s13065-025-01461-x
Faiyaz Shakeel, Ramadan Al-Shdefat, Mohammad Ali, Usama Ahmad
{"title":"Temperature-dependent solubilization and thermodynamic characteristics of ribociclib in varied {PEG 400 + water} combinations","authors":"Faiyaz Shakeel, Ramadan Al-Shdefat, Mohammad Ali, Usama Ahmad","doi":"10.1186/s13065-025-01461-x","DOIUrl":"10.1186/s13065-025-01461-x","url":null,"abstract":"<div><p>The solubility and thermodynamic characteristics of ribociclib (RCB), a new anticancer medication, have been assessed in a range of {polyethylene glycol 400 (PEG 400) + water} combinations at 293.2–313.2 K and atmospheric pressure. RCB solubility was determined utilizing the saturation shake flask approach, and “van’t Hoff, Apelblat, Buchowski-Ksiazczak <i>λh</i>, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van’t Hoff models” were utilized to validate the measured experimental data. The uncertainties for the computational predictions were less than 3.0% throughout the validation, indicating an outstanding relationship with the experimental RCB solubility data. PEG 400 mass fraction and temperature both improved the solubility of RCB in mole fraction in the compositions of {PEG 400 + water}. It was discovered that the RCB solubility in mole fraction was greatest in pure PEG 400 (1.04 × 10<sup>− 1</sup>) at 313.2 K and lowest in neat water (1.07 × 10<sup>− 6</sup> at 293.2 K). All of the {PEG 400 + water} mixes under study showed “endothermic and entropy-driven” RCB dissolution, as indicated by the positive values of the estimated thermodynamic parameters. Compared to RCB-water, RCB-PEG 400 exhibited the strongest molecular interactions. PEG 400 offers a great potential for RCB solubilization in water, according to the evaluation’s findings.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01461-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-03-22DOI: 10.1186/s13065-025-01436-y
Ene F. Otoh, Michael O. Odey, Osinde I. Martin, Daniel C. Agurokpon
{"title":"In silico engineering of graphitic carbon nitride nanostructures through germanium mono-doping and codoping with transition metals (Ni, Pd, Pt) as sensors for diazinon organophosphorus pesticide pollutants","authors":"Ene F. Otoh, Michael O. Odey, Osinde I. Martin, Daniel C. Agurokpon","doi":"10.1186/s13065-025-01436-y","DOIUrl":"10.1186/s13065-025-01436-y","url":null,"abstract":"<div><p>The extensive use of pesticides has raised concerns about environmental contamination, which poses potential health risks to humans and aquatic life. Hence, the need for a healthy and friendly ecosystem initiated this study, which was modeled through profound density functional theory (DFT) at the B3LYP-D3(BJ)/def2svp level of theory to gain insights into the electronic characteristics of germanium-doped graphitic carbon nitride (Ge@C<sub>3</sub>N<sub>4</sub>) engineered with nickel group transition metals (Ni, Pt, and Pd) as sensors for diazinon (DZN), an organophosphorus pesticide pollutant. To effectively sense diazinon, this research employed a variety of methodologies, beginning with the analysis of electronic properties, intermolecular investigations, adsorption studies, and sensor mechanisms. These detailed assessments revealed insightful results, as clearly indicated by their narrow energy gap and other electronic properties. Noncovalent interactions characterized by van der Waals forces were revealed predominantly by quantum atoms in molecules (QTAIM) and noncovalent interaction (NCI) analyses. Furthermore, the results of the adsorption studies, which measured the strength of the interaction between the pesticide molecules and the nanostructures, revealed favorable results characterized by negative adsorption energies of − 1.613, − 1.613, and − 1.599 eV for DZN_Ge@C<sub>3</sub>N<sub>4</sub>, DZN_Ni_Ge@C<sub>3</sub>N<sub>4</sub>, and DZN_Pd_Ge@C<sub>3</sub>N<sub>4</sub>, respectively. The simulated mechanism through which diazinon is sensed revealed favorable results, as observed by the negative Fermi energy and fraction of electron transfer (∆N), as well as a high dipole moment. This study also revealed that the codoping influenced the behavior of the systems, revealing that DZN_Ni_Ge@C<sub>3</sub>N<sub>4</sub> was the best sensing system because of its strongest adsorption (− 1.613 eV), highest dipole moment (8.348 D), most negative Fermi energy (− 1.300 eV), lowest work function (1.300 eV), and good ∆N (− 1.558) values. This study, therefore, proposes these nanostructures for further in vitro studies seeking to sense diazinon and other pesticides to maintain healthy ecosystems.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01436-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143676476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-03-22DOI: 10.1186/s13065-025-01425-1
Eva Hobeika, Joseph Saab, Souheil Hallit, Isaac-Aaron Morales Frias, Nicole Jaffrezic-Renault, Abdelhamid Errachid
{"title":"Enhancing antibiotic detection via an aptasensor: the case of ciprofloxacin","authors":"Eva Hobeika, Joseph Saab, Souheil Hallit, Isaac-Aaron Morales Frias, Nicole Jaffrezic-Renault, Abdelhamid Errachid","doi":"10.1186/s13065-025-01425-1","DOIUrl":"10.1186/s13065-025-01425-1","url":null,"abstract":"<div><p>The need for fast, efficient, and cost-effective test systems for antibiotics is surging, to control resistant bacterial strains. Electrochemical biosensors offer a good alternative to routine laboratory-bound analytical methods. These biosensors are portable, suitable for in-field analysis and biocompatible for detection of small biomolecules. The aim of this work is the ciprofloxacin active pharmaceutical ingredient since resistance of bacteria to this antibiotic is reportedly increasing worldwide, especially in Lebanon where hospitalization bills are no longer affordable. So, the target is ciprofloxacin detection, a fluoroquinolone antibiotic, on screen-printed electrodes. Following diazonium salt, also known as carboxymethylaniline (CMA) deposition, a ciprofloxacin oligonucleotide was incubated on the electrode. This aptamer acts as an anchor for the ciprofloxacin molecule, allowing the latter’s attachment to the electrode and its quantification. Electrochemical characterization, through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) allowed for deposition of molecules on electrodes and confirmation that an electrochemical change took place. Scanning Electron Microscope images are used to confirm conformational changes on the surface of electrodes. Impedance results reported a limit of detection of LOD = 3 nM, a dynamic range from 10 nM to 100 µM, and reproducibility of results between two aptasensors to be 10%. Moreover, impedimetric sensor specificity evaluation was through the effect of interfering compounds tobramycin, ofloxacin, norfloxacin and ceftriaxone, on the aptasensor’s response. Based on available literature, this LOD level reached allows for the detection of ciprofloxacin via a portable potentiostat in environmental (wastewater, food), biological (urine, saliva) and pharmaceutical samples (efficient market withdrawal of counterfeit medications from pharmaceutical storage facilities).</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01425-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-03-20DOI: 10.1186/s13065-025-01429-x
Sobhy M. El-Adl, Amr A. Mattar, Omar M. El-Abassy, Mahmoud M. Sebaiy
{"title":"Development of UV-Chemometric techniques for resolving the overlapped spectra of aspirin, caffeine and orphenadrine citrate in their combined pharmaceutical dosage form","authors":"Sobhy M. El-Adl, Amr A. Mattar, Omar M. El-Abassy, Mahmoud M. Sebaiy","doi":"10.1186/s13065-025-01429-x","DOIUrl":"10.1186/s13065-025-01429-x","url":null,"abstract":"<div><p>A UV-chemometric approach has been developed to analyze a ternary combination of aspirin, caffeine, and orphenadrine citrate without the need for previous separation. The method is easy, specific, accurate, and highly precise. The three medications were evaluated simultaneously utilizing CLS, PLS, and PCR, which were generated based on separate data sets that yielded superior findings. Regrettably, their accurate estimation could only be achieved using the PLS approach. In order to determine the prediction power of each chemometric approach, its validity has been tested using 8 synthetic mixes. The latent variable number varies across various models as the dataset changes. The comparison of various methodologies and the assessment of the predictive capacity of each set of data were done using the predicted residual error sum of squares (PRESS) and the root mean square error of prediction (RMSEP). The created approach was also used to statistically compare the performance of PLS in a dataset with zero absorption, as well as to compare the performance of the offered chemometric methods in various datasets. The environmental impact of the created approach was assessed to determine the overall ecological sustainability of the designed methodology. According to the new Blue Applicability Grade Index (BAGI) evaluation methodology, the suggested technique was also found to be practicable.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01429-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-03-20DOI: 10.1186/s13065-025-01441-1
Safaa Hussein Salah El-Din, Amr M. Mahmoud, Amany Morsi
{"title":"Eco-friendly RP-HPLC method for simultaneous determination of water-soluble and fat-soluble vitamins in nano-formula and pharmaceutical dosage forms","authors":"Safaa Hussein Salah El-Din, Amr M. Mahmoud, Amany Morsi","doi":"10.1186/s13065-025-01441-1","DOIUrl":"10.1186/s13065-025-01441-1","url":null,"abstract":"<div><p>A green method for simultaneous determination of water soluble vitamin (vitamin C) and fat soluble vitamin (vitamin A) was developed using reversed phase high performance liquid chromatography technique. The method succeed to separate the water-soluble and fat-soluble vitamins by isocratic elution using Agilent Zorbax octylsilane column (250 × 4.6 mm, 5 μm) in a short single run. The proposed mobile phase consisted of buffer (10 mM potassium dihydrogen phosphate and 3 mM hexane sulfonic acid sodium salt), pH adjusted to 2.5 using orthophosphoric acid and methanol in a ratio (8:92 v/v) with flow rate 1.0 mL.min<sup>− 1</sup> and UV detection 328 nm for vitamin A and 243 nm for vitamin C in concentration range (0.5–30 IU.mL<sup>− 1</sup>) and (1–60 µg.mL<sup>− 1</sup>), respectively. Accuracy results were 99.49% ± 1.58 for vitamin C and 100.26% ± 1.86 for vitamin A, limit of detection (L.O.D) of vitamin C is 0.3 µg.mL<sup>− 1</sup> while for vitamin A is 0.15 IU.mL<sup>− 1</sup> and limit of quantification (L.O.Q) of vitamin C is 1.0 µg.mL<sup>− 1</sup> while for vitamin A is 0.5 IU.mL<sup>− 1</sup>. Analytical eco scale and green analytical procedure index showed that our proposed method is greener than the reported method. The proposed method validation was performed according to ICH guidelines and the method was applied successfully for determination of vitamin A and vitamin C simultaneously in cosmetic nano-formulation, pharmaceutical dosage form and in pure forms.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01441-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-03-19DOI: 10.1186/s13065-025-01435-z
Haitham A. El Fiky, Mahmoud A. Tantawy, Dina A. Ahmed, Maha F. Abd El Ghanyd, Amr M. Badawey, Nermine V. Fares
{"title":"A stability-indicating potentiometric platform for assaying Metoprolol succinate and felodipine in their tablets and human plasma","authors":"Haitham A. El Fiky, Mahmoud A. Tantawy, Dina A. Ahmed, Maha F. Abd El Ghanyd, Amr M. Badawey, Nermine V. Fares","doi":"10.1186/s13065-025-01435-z","DOIUrl":"10.1186/s13065-025-01435-z","url":null,"abstract":"<div><p>Solid contact electrodes are prevalent in analytical applications due to their superior performance compared to traditional electrodes. Nonetheless, these electrodes have been observed to develop a water layer, which compromises their stability. In this study, we introduce an innovative solid contact ion selective electrode designed to mitigate this issue by incorporating multi-walled carbon nanotubes. This system was utilized for potentiometric sensing of metoprolol and felodipine. Furthermore, molecular imprinted polymer was developed to enhance selectivity for determination of felodipine. The electrode modified with multi-walled carbon nanotubes was employed for the quantification of metoprolol, exhibiting a Nernstian slope of 55.23 mV/decade over a linear concentration range of 1.0 × 10<sup>− 7</sup> to 1.0 × 10<sup>− 2</sup> mol L<sup>− 1</sup>, at a pH of 7.0. The molecularly imprinted polymer-modified electrode was utilized for the determination of felodipine, showing slope of 56.089 mV/decade across a linear range of 1.0 × 10<sup>− 7</sup> to 1.0 × 10<sup>− 4</sup> mol L<sup>− 1</sup>, at a pH of 3.0. Detection limits for both sensor were less than 8.0 × 10<sup>− 8</sup> mol L<sup>− 1</sup>. The developed sensors were successfully utilized for the quantification of the aforementioned drugs in pharmaceutical tablets, in human plasma samples and in the presence of their degradates. The proposed approach showed a better linearity range and a lower limit of detection for metoprolol quantification compared to its reported potentiometric methods. Moreover, it was the first one to use such an electrochemical technique for felodipine detection.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01435-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultra-performance liquid chromatography method for quantitative analysis of nystatin and triamcinolone acetonide in topical creams after in vitro release using franz diffusion cell","authors":"Seelam Jayadev, Ismail Yusuff, Faiyaz Shakeel, Ubaidulla Uthumansha","doi":"10.1186/s13065-025-01446-w","DOIUrl":"10.1186/s13065-025-01446-w","url":null,"abstract":"<p>The accurate quantification of active ingredients in topical creams is critical for ensuring efficacy, safety, and quality. Therefore, this initiative is to develop and validate a robust ultra-performance liquid chromatography (UPLC) method for the quantification of nystatin (Nys) and triamcinolone acetonide (TA) in topical creams. Validation of the in vitro release test (IVRT) apparatus and UPLC method was conducted according to standard requirements. IVRT apparatus demonstrated exceptional control over key parameters, aligning with stringent standards, thus ensuring consistent and reproducible drug release profiles. Membrane inertness evaluation confirmed no significant binding of Nys and TA. The proposed UPLC method was found to be linear in the range of 0.65–31.93 µg/mL for TA and 17.67-863.27 IU/mL for Nys with determination coefficients of 1.0000 for both drugs, enabling accurate measurement across a wide range of drug concentrations. Recovery rates and mass balance results were within acceptable ranges, validating the method’s accuracy. The IVRT method exhibited low day-1 and day-2 variability, underscoring its reliability. Sensitivity and specificity were comparable to similar studies, demonstrating the method’s applicability in distinguishing between different formulation strengths and variations. The method’s robustness was confirmed by its resistance to variations in dose amount, receptor media composition, stirring speed (stirring speed is controlled by rotation speed controller connected to the vertical diffusion cell Instrument. Material of construction is plastic, plastic bead is connected to the helix spring and placed in the cell for uniform mixing.), and temperature. The UPLC method validation affirmed its high sensitivity and reliability for detecting low levels of active ingredients, with excellent selectivity, specificity, linearity, precision, accuracy, stability, and robustness. The IVRT equipment’s and UPLC analytical method’s thorough certification and validation procedures verify its fit for the precise and dependable measurement of Nys and TA in topical cream compositions. These confirmed techniques satisfy all scientific and legal criteria.</p><p>Not Applicable.</p>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01446-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-03-17DOI: 10.1186/s13065-025-01443-z
Xiutao Yang, Pan Liu, Hongwen Yu
{"title":"Adsorption of heavy metals from wastewater using reduced graphene oxide@titanate hybrids in batch and fixed bed systems","authors":"Xiutao Yang, Pan Liu, Hongwen Yu","doi":"10.1186/s13065-025-01443-z","DOIUrl":"10.1186/s13065-025-01443-z","url":null,"abstract":"<div><p>Wastewater contaminated by heavy metal ions poses serious threats to the ecosystem, needing to be well disposed of. In this study, reduced graphene oxide@titanate hybrids (rGOTHs) are synthesized to efficiently remove heavy metals from wastewater in batch and fixed bed systems. The size of prepared rGOTHs is large as hundreds of microns, which is beneficial for separation and application in batch and fixed bed system. In the batch studies, rGOTHs exhibits the fast adsorption rate and high adsorption capacity towards heavy metals, in which the adsorption kinetic and isothermal are best fitted to Pseudo-second-order kinetic model and Langmuir model, respectively. The maximum adsorption capacities of rGOTHs for Pb(II), Cd(II) and Cu(II) are 530.5, 201 and 130.5 mg/g at 298 K and pH 5, respectively. In addition, the exhausted adsorbent can be easily regenerated in alkaline hydrothermal process and the high removal efficiency is almost reserved after six cycles. Moreover, rGOTHs presents higher selective adsorption towards Pb(II) than other ions. Adsorption mechanisms are revealed to be ions exchange, electrostatic interaction, and coordination. In the fixed bed experiments, the effective treatment volume of rGOTHs-loaded column reaches to 2760 BV (15.45 L) for single Pb(II) polluted battery manufactory wastewater and 2280 BV (12.76 L) for multiple heavy metal polluted estuary effluent, before Pb(II) concentration exceeds the discharge limit of 1 mg/L. Our study demonstrates the great potential of rGOTHs to be applied in practical treatment of wastewater contaminated by heavy metal ions.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01443-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating green analytical chemistry and analytical quality by design: an innovative approach for RP-UPLC method development of ensifentrine in bulk and inhalation formulations","authors":"Mohan Goud Vanga, Sarad Pawar Naik Bukke, Praveen Kumar Kusuma, Bayapa Reddy Narapureddy, Chandrashekar Thalluri","doi":"10.1186/s13065-025-01448-8","DOIUrl":"10.1186/s13065-025-01448-8","url":null,"abstract":"<div><h3>Background</h3><p>Chronic obstructive pulmonary disease (COPD) is a significant global health issue, worsened by pollution and modernisation. Ensifentrine (EFT), a new dual inhibitor of phosphodiesterase PDE3 and PDE4, is being developed for inhalation to target airway inflammation, bronchodilation, and ciliary function in COPD treatment.</p><h3>Objective</h3><p>This study aims to develop and validate a new quantification method for Ensifentrine, as no previous techniques are available, by integrating analytical quality-by-design (AQbD) and green analytical chemistry (GAC) principles.</p><h3>Methods</h3><p>An AQbD framework, utilizing Design-expert<sup>®</sup> software and a central composite design, optimized the RP-UPLC method. The optimized conditions involved isocratic separation on an ACQUITY UPLC HSS C18 SB column at ambient temperature, with a mobile phase of 0.01 N KH<sub>2</sub>PO<sub>4</sub> (pH 5.4) and acetonitrile (66.4:33.6 v/v), a flow rate of 0.27 mL/min, and PDA detection at 272.0 nm.</p><h3>Results</h3><p>The statistical analysis confirmed the model’s significance and normal distribution. The method, validated according to ICH guidelines, showed good linearity (r<sup>2</sup> = 0.9997) over a range of 3.75–22.5 μg/mL, with an LOD of 3.3 μg/mL and LOQ of 10 μg/mL. It was successfully applied to bulk materials and pharmaceutical formulations with statistical comparisons.</p><h3>Green chemistry assessment</h3><p>The greenness of the developed method was evaluated using tools such as ComplexMoGAPI, AGREE, BAGI, Green certificate-modified Eco-scale, and ChlorTox Scale. Additionally, the EVG method evaluation tool was also used to assess environmental impact, with the results shown in a radar chart.</p><h3>Conclusion</h3><p>This study presents a sensitive and robust RP-UPLC method for quantifying Ensifentrine, combining AQbD and GAC principles. The method, validated according to ICH guidelines, also ensures environmental sustainability. This approach sets a precedent for future analytical method development in pharmaceutical sciences with a focus on sustainability.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01448-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143629713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}