BMC ChemistryPub Date : 2025-04-02DOI: 10.1186/s13065-025-01460-y
B. V.N. Sewwandi, A. R. Kumarasinghe, Xing CHEN, P. M.C.J. Bandara, L. Jayarathna, Rohan Weerasooriya
{"title":"A novel fabrication method of vertically aligned carbon nanotubes by single-stage floating catalyst CVD","authors":"B. V.N. Sewwandi, A. R. Kumarasinghe, Xing CHEN, P. M.C.J. Bandara, L. Jayarathna, Rohan Weerasooriya","doi":"10.1186/s13065-025-01460-y","DOIUrl":"10.1186/s13065-025-01460-y","url":null,"abstract":"<div><p>The single-stage floating catalyst chemical vapor deposition (SS-FCCVD) method using the ferrocene route (e.g., ferrocene: catalyst and camphor: carbon source) offers significant but largely unexplored versatility for the production of carbon nanotubes (CNTs). Our study used the SS-FCCVD method to grow vertically aligned carbon nanotubes (VACNTs) on an alumina ceramic reactor surface at 850 °C under a nitrogen atmosphere. The experimental setup included a camphor/ferrocene ratio of 20:1 and a specific temperature gradient of 21 °C/cm. To minimize the catalyst agglomeration, we positioned the chemical sources at a distance of 15 cm from the inlet of the CVD reactor. Alumina ceramic surfaces proved highly effective for VACNT production, showing minimal agglomeration of iron particles, facilitating the formation of reactive sites essential for VACNT growth. The VACNTs grew readily on alumina ceramic surfaces, forming bundled, forest-like structures with segment lengths up to 1.2 mm and diameters around 60 nm. When compared to conventional substrates, the surface area of the reaction zone substrate increases by up to 705%, resulting in a significant boost in VACNT yield. A detailed evaluation of characterization results confirmed the growth mechanism and behavior of Fe particles such that carbon-encapsulated particles are attached to the inner and outer surfaces of the CNTs. These VACNT surfaces exhibited superhydrophobic properties, similar to the lotus leaf effect. The synthesized iron-dispersed CNTs exhibit exceptional efficiency in Chromium (VI) removal, with an impressive adsorption capacity of 0.206 mmol/m², positioning them as a promising solution for effective water treatment. This scalable SS-FCCVD method using the ferrocene route achieved the longest VACNTs reported to date.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01460-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-04-02DOI: 10.1186/s13065-025-01427-z
Rasha Th. El-Eryan, Mona S. Elshahed, Dalia Mohamed, Azza A. Ashour, Heba T. Elbalkiny
{"title":"Functionalized novel carbon dots from bell pepper seeds for sustainable green Edoxaban quantification","authors":"Rasha Th. El-Eryan, Mona S. Elshahed, Dalia Mohamed, Azza A. Ashour, Heba T. Elbalkiny","doi":"10.1186/s13065-025-01427-z","DOIUrl":"10.1186/s13065-025-01427-z","url":null,"abstract":"<div><p>Global warming and the developed worldwide awareness have persuaded efforts to minimize the generated hazardous wastes. As a result, “green” chemical procedures are being gradually included in science for sustainable development. This concept has been extended and inspired chemists to fabricate novel green carbon dots (CDs) from natural plants. Herein, we represent novel CDs synthesized by recycling seeds obtained from bell pepper as fluorescent probe for the determination of Edoxaban tosylate hydrate (EDO) a non-fluorescent drug; we exploit the advantage of the inner filter effect between the absorption peak of the drug and the emission peak of the CDs. This overlap resulted in quenching the fluorescence of CDs by increasing the concentration of EDO within the range 0.80–20.00 µg/mL with a limit of detection 0.23 and 0.22 µg/mL and a limit of quantitation 0.69 and 0.72 µg/mL for Microwave CDs and Plate CDs, respectively, at λ<sub>ex</sub>/λ<sub>em</sub> 310/409 nm. Two facile preparation techniques for the CDs were used, the microwave-assisted method and the thermal decomposition method, using a single-step approach. The fabricated CDs were characterized using various techniques, including UV-vis, fluorescence and Fourier transform infrared spectroscopies, energy-dispersive X-ray, high-resolution transmission electron microscope, X-ray Diffaction, X-Ray photoelectron spectroscopy and zeta potential. The performance of the synthesized fluorescent probe for the determination of EDO was evaluated according to ICH guidelines. The accomplished results, together with the simplicity, sensitivity, and low cost of the developed probe, recommended its appropriateness for the routine quality control assay of EDO pharmaceutical formulation, as good % recovery was obtained upon the investigation of the marketed tablets with 99.77% and 98.79% recoveries for microwave CDs and plate CDs, respectively. The method’s greenness was evaluated using three integral matrices, the Blue Applicability Grade Index, the Complementary Green Analytical Procedure Index and Analytical Eco-Scale.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01427-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-04-02DOI: 10.1186/s13065-025-01462-w
Wajeeha Qayyum, Noor Tahir, Muhammad Zahid, Saima Noreen, Muhammad Yaseen, Abeer A. AlObaid, Qamar Abbas, Ghulam Mustafa
{"title":"Robust ternary system of corncob-derived carbon quantum dots/ ZnFe2O4/graphene oxide for wastewater treatment","authors":"Wajeeha Qayyum, Noor Tahir, Muhammad Zahid, Saima Noreen, Muhammad Yaseen, Abeer A. AlObaid, Qamar Abbas, Ghulam Mustafa","doi":"10.1186/s13065-025-01462-w","DOIUrl":"10.1186/s13065-025-01462-w","url":null,"abstract":"<div><p>Water contamination emerging from urban and industrial waste disposal is posing an alarming threat to human and marine life. Hence, it is imperative to take a crucial approach to lowering the overall cost and time of wastewater treatment. The efficiency of heterogeneous photo Fenton green wastewater treatment processes relies mainly on the morphology and surface interface properties of photocatalysts for harnessing maximum sunlight energy. This research work reports for the first time the hydrothermal synthesis of ternary zinc ferrite coupled with carbon quantum dots derived primarily from corncob biomass and supported over graphene oxide. The physiochemical properties and microstructure of magnetic graphene oxide anchored over carbon quantum dots included Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope/Energy Dispersive X-ray, X-ray photoelectron spectroscopy, X-ray diffraction and Ultraviolet–Visible Spectroscopy. The effect of several factors on the photocatalytic degradation of Rhodamine B (RhB) dye was studied and maximum degradation was attained at optimized conditions of pH = 4, catalyst concentration (20 mg/100 mL), oxidant dose (10 mM) and degradation time (60 min). Response surface methodology was used to determine the optimization of various interacting parameters. The current research focused on the utilization of waste corncob biomass as a potential candidate for the novel ternary nanocomposite for effective treatment dye wastewater and reuse of treated dye water over wheat seeds germination.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01462-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-04-02DOI: 10.1186/s13065-025-01449-7
Yong-Feng Lv, Fu-Cai Ren, Kang Hui, Jie Zheng, Shou-Jin Liu, Han Luo
{"title":"Synthesis and anti-inflammatory activity of novel 1,2,3-triazole- derivatives from 7-Oxodehydroabietic acid","authors":"Yong-Feng Lv, Fu-Cai Ren, Kang Hui, Jie Zheng, Shou-Jin Liu, Han Luo","doi":"10.1186/s13065-025-01449-7","DOIUrl":"10.1186/s13065-025-01449-7","url":null,"abstract":"<div><p>Dehydroabietic acid (DHA) is a naturally occurring diterpene with relevant biological activities. 7-Oxodehydroabietic acid as a highly oxidized state derivative from Dehydroabietic acid (DHA) showing good activities. However, the reported compounds did not include triazole derivatives. To discover novel potent anti-inflammatory diterpenoids, a series of hybrids of 7-Oxodehydroabietic acid containing 1,2,3-triazole moiety were designed and synthesized. The anti-inflammatory activity of the new compounds was assessed towards BV2 cell lines using L-NMMA (IC<sub>50</sub> = 42.36 ± 2.47 <i>µ</i>M) as a positive control. Compared with the L-NMMA, anti-inflammatory effect (NO inhibitory activities) was found in these novel molecules, especially compounds <b>9</b> (IC<sub>50</sub> = 8.00 ± 0.83 <i>µ</i>M), <b>10</b> (IC<sub>50</sub> = 8.44 ± 0.89 <i>µ</i>M), <b>15</b> (IC<sub>50</sub> = 8.13 ± 0.97 <i>µ</i>M) and <b>16</b> (IC<sub>50</sub> = 8.84 ± 1.10 <i>µ</i>M). The anti-inflammatory activity of compounds <b>9</b>, <b>10</b>, <b>15</b> and <b>16</b> in vivo are underway.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01449-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-04-02DOI: 10.1186/s13065-025-01450-0
Hadeer A. Elhamdy, Sayed M. Derayea, Khalid M. Badr El-Din, Mohamed Oraby
{"title":"Novel spectrophotometric methods for concurrent assessment of duloxetine and avanafil in their binary mixture using derivative spectroscopy: greenness-blueness evaluation","authors":"Hadeer A. Elhamdy, Sayed M. Derayea, Khalid M. Badr El-Din, Mohamed Oraby","doi":"10.1186/s13065-025-01450-0","DOIUrl":"10.1186/s13065-025-01450-0","url":null,"abstract":"<div><p>Antidepressant drugs, particularly selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are known to induce sexual dysfunction as a side effect. Duloxetine (DLX) and Avanafil (AVN) are simultaneously determined in their pure state and laboratory-prepared mixtures by two novel, environmentally friendly spectrophotometric methods. The first method was based on second order derivatives while the second method is based on first derivative dual-wavelength. In method I, the linearity range was found to be 0.5–12 µg/mL and 1–12 µg/mL with limit of detection 0.15 µg/mL and 0.27 µg/mL for DLX and AVN, respectively. In method II, the linearity range was found to be 1–10 µg/mL for both drugs with limit of detection 0.18 µg/mL and 0.21 µg/mL for DLX and AVN, respectively. The validation of these approaches meets the International Council for Harmonization’s (ICH) standards. Furthermore, three current ecological tools namely the Eco-Scale, GAPI, and AGREE were used to evaluate the proposed method’s greenness. The sustainability characteristics of the proposed method were also assessed using the Blue Applicability Grade Index (BAGI), a recently developed metric for assessing the practicality (blueness) of procedures.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01450-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-03-28DOI: 10.1186/s13065-025-01439-9
Dina Salah El-Kafrawy, Amira H. Abo-Gharam
{"title":"Comparative study of Normal-phase versus reversed-phase HPTLC methods for the concurrent quantification of three antiviral agents against COVID19: Remdesivir, favipiravir and Molnupiravir: trichromatic sustainability assessment","authors":"Dina Salah El-Kafrawy, Amira H. Abo-Gharam","doi":"10.1186/s13065-025-01439-9","DOIUrl":"10.1186/s13065-025-01439-9","url":null,"abstract":"<div><p>The pursuit of sustainability in analytical chemistry is a multifaceted, challenging and complex endeavor. This requires continuous and competitive attempts to achieve the sustainable development goals at every step of the analytical methodology by adhering to the principles of green, blue and white analytical chemistry. This also involves assessment of the degree of sustainability using the latest evaluation metrics until finally reaching the design of a trichromatic procedure. The herein illustrated work represents a comparative study between two newly developed normal-phase and reverse-phase HPTLC methods for the simultaneous quantitative determination of Remdesivir (RMD), Favipiravir (FAV) and Molnupiravir (MOL). For normal-phase HPTLC method, the employed mobile phase consisted of ethyl acetate: ethanol: water (9.4:0.4:0.25, v/v), while, for reverse-phase HPTLC procedure, a greener mobile phase was employed consisting of ethanol: water (6:4, v/v). For both methods, detection wavelength of RMD and MOL was 244 nm while FAV was detected at 325 nm. Both methods were validated following the International Council for Harmonisation (ICH) guidelines with respect to linearity, range, accuracy, precision and robustness. The two established methods were proved to be linear over the range of 50-2000 ng/band for FAV and MOL and over the range of 30–800 ng/band for RMD. The excellent linearities were proved by the high values of correlation coefficients not less than 0.99988. The developed methods were successfully applied for the determination of the three drugs in their bulk form and in their pharmaceutical formulations. Furthermore, a thorough comparative and integrative trichromatic evaluation of sustainability of the designed methods was performed. The Analytical Eco-Scale, the novel Modified Green Analytical Procedure Index (MoGAPI) (2024) and the Analytical GREEnness (AGREE) metrics were applied for greenness assessment and the recent Blue Applicability Grade Index (BAGI) (2023) tool was employed for blueness evaluation. Finally, the RGB12 model was implemented for appraisal of whiteness of the developed methods.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01439-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143726665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The potential of novel arsenic nanoparticles containing metformin (MTF@As NPs): a study on their antioxidant and cytotoxic properties","authors":"Mojtaba Shakibaie, Seyed Soheil Hosseininasab, Soudabe Riahi-Madvar, Mahboubeh Adeli-Sardou, Fereshteh Jabari-Morouei, Hamid Forootanfar","doi":"10.1186/s13065-025-01419-z","DOIUrl":"10.1186/s13065-025-01419-z","url":null,"abstract":"<div><p>In the present research, arsenic nanoparticles containing metformin (MTF@As NPs) were synthesized by subjecting a mixture of As<sub>2</sub>O<sub>3</sub> and sodium borohydride solution to microwave irradiation in the presence of metformin. The physicochemical properties of the prepared nanoparticles were analyzed using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). The nanoparticles were assessed for their antioxidant potential, hemocompatibility, and cytotoxic effects. Based on the study’s findings, it was found that MTF@As NPs have a size range of 14–38 nm. DPPH scavenging and iron-reducing assays demonstrated that MTF@As NPs exhibited significantly higher antioxidant activity than As NPs (80–1280 µg/mL). The study also revealed that nanoparticles were compatible materials that did not induce significant hemolysis in RBCs. According to the study, the concentration required for death of half of the cells (IC<sub>50</sub>) treated with MTF@As NPs after 24 h was found to be 33.5 ± 2.6 µg/mL and 5.7 ± 0.3 µg/mL for MCF-7, and NIH3T3 cells, respectively. Notably, MTF@As NPs exhibited significantly higher toxicity against MCF-7 cells at higher concentrations (40–1280 µg/mL). This study provides insights into the cytotoxic properties of MTF@As NPs, additional investigation is necessary to fully understand these nanoparticles’ underlying biological mechanisms.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01419-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143726661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-03-28DOI: 10.1186/s13065-025-01447-9
Esraa S. Ashour, Ghada M. El-Sayed, Maha A. Hegazy, Nermine S. Ghoniem
{"title":"Chemometric-assisted UV spectrophotometric methods for determination of miconazole nitrate and lidocaine hydrochloride along with potential impurity and dosage from preservatives","authors":"Esraa S. Ashour, Ghada M. El-Sayed, Maha A. Hegazy, Nermine S. Ghoniem","doi":"10.1186/s13065-025-01447-9","DOIUrl":"10.1186/s13065-025-01447-9","url":null,"abstract":"<div><p>Three accurate, simple, and precise chemometric techniques, principal component regression (PCR), partial least squares (PLS), and backward interval partial least squares (biPLS) were used to resolve the severely overlapped UV spectra of miconazole nitrate (MIC) and Lidocaine hydrochloride (LDC) along with the toxic impurity of LDC; dimethyl aniline (DMA) and the two inactive ingredients; methyl paraben (MTP) and saccharin sodium (SAC). The concentration ranges of the developed models were found to be (2.40–12.00 µg/mL) for LDC and MIC, (1.50–7.50 µg/mL) for DMA and MTP, and (2.00–6.00 µg/mL) for SAC. The proposed methods were found to be green, rapid, and were effectively used to analyze the studied compounds in both laboratory-prepared mixtures and antifungal oral gel, where no impurity was detected. The obtained results revealed that PLS algorithm was superior to PCR depending on the lowest root mean square error of prediction (RMSEP) and correlation coefficient values (r). The biPLS model, constructed with [3, 4, 5, 6, 8, and 9] subintervals, is considered the most efficient model with the lowest number of latent variables. biPLS is ideal for data analysis and enhancing model performance and robustness by focusing on the most relevant spectral regions. When compared to a reported HPLC method, the proposed methods showed non-significant difference regarding accuracy and precision. The developed models often yield faster results than HPLC. Once the model is built, it takes no time to predict multiple samples without requiring reconstruction, in addition, the proposed models minimize the costs of solvents and equipment compared to HPLC, making them a valuable option for quality control laboratories.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01447-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143726663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC ChemistryPub Date : 2025-03-28DOI: 10.1186/s13065-025-01444-y
Samia M. Ibrahim, Ahmed F. Al-Hossainy, Asmaa Y. Wahman
{"title":"Adsorptive-removal of bromothymol blue & keto-bromothymol blue from wastewater using antioxidant curcumin: thermodynamic assessment, kinetic and isotherm modeling","authors":"Samia M. Ibrahim, Ahmed F. Al-Hossainy, Asmaa Y. Wahman","doi":"10.1186/s13065-025-01444-y","DOIUrl":"10.1186/s13065-025-01444-y","url":null,"abstract":"<div><p>Our research objective is using a spectrophotometer method at a wavelength of 430 nm to explore the removal of bromthymol blue (BTB) & keto-bromothymol blue (KBTB) dyes utilizing curcumin (CUR) as an adsorbent. The impacts of several factors such as initial dye concentration, adsorbent dose, contact time, and temperature, were examined. The adsorption equilibrium data were assessed utilizing Langmuir and Freundlich, as well as an appropriate reaction mechanism, were put forth and discussed. CUR, (CUR -BTB) and (CUR -KBTB) dye were confirmed using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) techniques. The highest percentages of curcumin elimination of BTB, KBTB were 43 & 90%, respectively, at 430 nm and 25 °C, and dye adsorption by the adsorbent increased with increasing initial dye concentration but decreased with increasing adsorbent dose. First-order kinetic models in elimination of BTB and KBTB with correlation 0.97 & 0.98, respectively, were fitted using the experimental data for removal of BTB & KBTB by CUR. This demonstrated that chemisorption, which involves valence forces through the sharing or exchange of electrons, is the rate-limiting phase. Hence, the exothermic nature of BTB adsorption onto CUR is indicated by the negative value of ΔH°(-54.216 kJmol<sup>− 1</sup>). Once more, the non-spontaneous nature of the adsorption process is indicated by the positive ΔG° value (+ 49.65 kJmol<sup>− 1</sup>). Furthermore, the non-affinity of CUR for BTB dye is illustrated by the -ve of change of entropy, ΔS° (-166.78 J/mol K).</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01444-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143726664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a metal-organic framework-based nanosensor for determination of cyclosporine in plasma samples","authors":"Reza Moharami, Zahra Karimzadeh, Zahra Golsanamlu, Afshin Gharakhani, Elaheh Rahimpour, Abolghasem Jouyban","doi":"10.1186/s13065-025-01456-8","DOIUrl":"10.1186/s13065-025-01456-8","url":null,"abstract":"<div><p>According to the narrow therapeutic range and multiple adverse effects of cyclosporine and the need for its therapeutic drug monitoring (TDM), in this study, an efficient zeolitic imidazolate framework-8 metal-organic framework (ZIF-8 MOF) based nanoprobe was designed for simple, rapid and high sensitive its quantification in plasma samples. After the successful synthesis of the ZIF-8 MOF, under the optimum condition, the fluorescence emission of ZIF-8 MOF, measured at an excitation wavelength of 370 nm and an emission wavelength of 417 nm, was enhanced with increasing cyclosporine concentration, due to the specific interactions between cyclosporine and the nanoprobe, including hydrogen bonding and hydrophobic effects. The nanoprobe showed a linear correlation between the analytical response and cyclosporine concentration in the concentration range of 0.01–1.0 µg mL<sup>− 1</sup>, with a detection limit of 0.003 µg mL<sup>− 1</sup>. Acceptable precision was achieved, evidenced by intra-day and inter-day relative standard deviations of 0.4% and 0.5%, respectively. Recovery between 97.1% and 102.1% in plasma samples indicated the method’s reliability in practical applications.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01456-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}