Entrance-channel plugging by natural sulfonamide antibiotics yields isoform-selective carbonic anhydrase IX inhibitors: an integrated in silico/ in vitro discovery of the lead SB-203207
Emadeldin M. Kamel, Noha A. Ahmed, Saleh Maodaa, Bassam A. Abuamarah, Sarah I. Othman, Adil Abalkhail, Faris F. Aba Alkhayl, Al Mokhtar Lamsabhi
{"title":"Entrance-channel plugging by natural sulfonamide antibiotics yields isoform-selective carbonic anhydrase IX inhibitors: an integrated in silico/ in vitro discovery of the lead SB-203207","authors":"Emadeldin M. Kamel, Noha A. Ahmed, Saleh Maodaa, Bassam A. Abuamarah, Sarah I. Othman, Adil Abalkhail, Faris F. Aba Alkhayl, Al Mokhtar Lamsabhi","doi":"10.1186/s13065-025-01634-8","DOIUrl":null,"url":null,"abstract":"<div><p>Carbonic anhydrase IX (CA IX) is a hypoxia-induced pH regulator whose over-expression drives tumor progression and therapy resistance. Most CA inhibitors rely on zinc chelation and lack isoform selectivity, limiting clinical utility. Here we combined structure-based docking, 200 ns molecular-dynamics simulations and steady-state enzyme kinetics to assess four rare sulfonamide/sulfone natural products (altemicidin, SB-203207, SB-203208 and sulfadixiamycin A) as non-classical CA IX blockers. Docking located every ligand at the mouth of the catalytic funnel (<b>−</b> 7.2 to <b>−</b> 9.4 kcal mol⁻¹) without coordinating Zn²⁺. MD-derived free-energy landscapes and MM/PBSA calculations confirmed durable entrance-bound complexes for SB-203207/208 and sulfadixiamycin A (ΔG<sub>total</sub> ≈ − 24 to <b>−</b> 27 kcal mol⁻¹) but frequent dissociation of altemicidin ( ≈ − 2 kcal mol⁻¹). Per-residue-decomposition pinpointed a hydrophobic wall (Leu91, Val121, Phe131, Leu198, Pro202, Phe243) plus anchoring H-bonds to Thr199 and Gln92. Recombinant-enzyme assays validated these predictions: SB-203207, SB-203208 and sulfadixiamycin A inhibited CA IX esterase activity with IC₅₀ = 73 ± 1, 99 ± 2, and 114 ± 3 nM, respectively, versus 41 ± 1 nM for reference acetazolamide. Crucially, SB-203207 showed marked selectivity, with SI = 28 (hCA I/IX) and SII = 14 (hCA II/IX), far exceeding the > 10-fold benchmark; SB-203208 and sulfadixiamycin A also met this threshold, whereas altemicidin was both weaker (1.90 µM) and less selective. Steady-state esterase kinetics were consistent with non-competitive inhibition and <i>K</i><sub>i</sub> values that mirrored the IC₅₀ rank order. SwissADME/ADMETlab profiling highlighted SB-203207 as the most developable hit. Together, these results establish entrance-channel plugging as an alternative mechanism for CA IX inhibition, identify SB-203207 as a potent and isoform-selective lead.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01634-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01634-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbonic anhydrase IX (CA IX) is a hypoxia-induced pH regulator whose over-expression drives tumor progression and therapy resistance. Most CA inhibitors rely on zinc chelation and lack isoform selectivity, limiting clinical utility. Here we combined structure-based docking, 200 ns molecular-dynamics simulations and steady-state enzyme kinetics to assess four rare sulfonamide/sulfone natural products (altemicidin, SB-203207, SB-203208 and sulfadixiamycin A) as non-classical CA IX blockers. Docking located every ligand at the mouth of the catalytic funnel (− 7.2 to − 9.4 kcal mol⁻¹) without coordinating Zn²⁺. MD-derived free-energy landscapes and MM/PBSA calculations confirmed durable entrance-bound complexes for SB-203207/208 and sulfadixiamycin A (ΔGtotal ≈ − 24 to − 27 kcal mol⁻¹) but frequent dissociation of altemicidin ( ≈ − 2 kcal mol⁻¹). Per-residue-decomposition pinpointed a hydrophobic wall (Leu91, Val121, Phe131, Leu198, Pro202, Phe243) plus anchoring H-bonds to Thr199 and Gln92. Recombinant-enzyme assays validated these predictions: SB-203207, SB-203208 and sulfadixiamycin A inhibited CA IX esterase activity with IC₅₀ = 73 ± 1, 99 ± 2, and 114 ± 3 nM, respectively, versus 41 ± 1 nM for reference acetazolamide. Crucially, SB-203207 showed marked selectivity, with SI = 28 (hCA I/IX) and SII = 14 (hCA II/IX), far exceeding the > 10-fold benchmark; SB-203208 and sulfadixiamycin A also met this threshold, whereas altemicidin was both weaker (1.90 µM) and less selective. Steady-state esterase kinetics were consistent with non-competitive inhibition and Ki values that mirrored the IC₅₀ rank order. SwissADME/ADMETlab profiling highlighted SB-203207 as the most developable hit. Together, these results establish entrance-channel plugging as an alternative mechanism for CA IX inhibition, identify SB-203207 as a potent and isoform-selective lead.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.