Potential Analysis最新文献

筛选
英文 中文
Some Inequalities Between Ahlfors Regular Conformal Dimension And Spectral Dimensions For Resistance Forms 阻力形式的Ahlfors正则保形维数与谱维数之间的若干不等式
3区 数学
Potential Analysis Pub Date : 2023-11-11 DOI: 10.1007/s11118-023-10112-6
Kôhei Sasaya
{"title":"Some Inequalities Between Ahlfors Regular Conformal Dimension And Spectral Dimensions For Resistance Forms","authors":"Kôhei Sasaya","doi":"10.1007/s11118-023-10112-6","DOIUrl":"https://doi.org/10.1007/s11118-023-10112-6","url":null,"abstract":"","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"9 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Restriction of a Right Process Outside a Negligible Set 可忽略集外右进程的约束
3区 数学
Potential Analysis Pub Date : 2023-11-09 DOI: 10.1007/s11118-023-10114-4
Liping Li, Michael Röckner
{"title":"On the Restriction of a Right Process Outside a Negligible Set","authors":"Liping Li, Michael Röckner","doi":"10.1007/s11118-023-10114-4","DOIUrl":"https://doi.org/10.1007/s11118-023-10114-4","url":null,"abstract":"","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":" 15","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135243421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rank 5 Trivializable Subriemannian Structure on $$mathbb {S}^7$$ and Subelliptic Heat Kernel $$mathbb {S}^7$$和亚椭圆热核上的5阶可琐屑的subriemann结构
3区 数学
Potential Analysis Pub Date : 2023-10-28 DOI: 10.1007/s11118-023-10110-8
Wolfram Bauer, Abdellah Laaroussi, Daisuke Tarama
{"title":"Rank 5 Trivializable Subriemannian Structure on $$mathbb {S}^7$$ and Subelliptic Heat Kernel","authors":"Wolfram Bauer, Abdellah Laaroussi, Daisuke Tarama","doi":"10.1007/s11118-023-10110-8","DOIUrl":"https://doi.org/10.1007/s11118-023-10110-8","url":null,"abstract":"Abstract We present an explicit form of the subelliptic heat kernel of the intrinsic sublaplacian $$Delta _{textrm{sub}}^5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> induced by a rank 5 trivializable subriemannian structure on the Euclidean seven dimensional sphere $$mathbb {S}^7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> . This completes the heat kernel analysis of trivializable subriemannian structures on $$mathbb {S}^7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> induced by a Clifford module action on $$mathbb {R}^8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>8</mml:mn> </mml:msup> </mml:math> . As an application we derive the spectrum of $$Delta _{textrm{sub}}^5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> and the Green function of the conformal sublaplacian in an explicit form.","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"1 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136233562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extensions of Harmonic Functions of the Complex Plane Slit Along a Line Segment 复平面狭缝调和函数沿线段的扩展
3区 数学
Potential Analysis Pub Date : 2023-10-19 DOI: 10.1007/s11118-023-10103-7
Armen Grigoryan, Andrzej Michalski, Dariusz Partyka
{"title":"Extensions of Harmonic Functions of the Complex Plane Slit Along a Line Segment","authors":"Armen Grigoryan, Andrzej Michalski, Dariusz Partyka","doi":"10.1007/s11118-023-10103-7","DOIUrl":"https://doi.org/10.1007/s11118-023-10103-7","url":null,"abstract":"Abstract Let I be a line segment in the complex plane $$mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> . We describe a method of constructing a bi-Lipschitz sense-preserving mapping of $$mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> onto itself, which is harmonic in $$mathbb Csetminus I$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo></mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> and coincides with a given sufficiently regular function $$f:Irightarrow mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>I</mml:mi> <mml:mo>→</mml:mo> <mml:mi>C</mml:mi> </mml:mrow> </mml:math> . As a result we show that a quasiconformal self-mapping of $$mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> which is harmonic in $$mathbb Csetminus I$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo></mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> does not have to be harmonic in $$mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> .","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135730415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lower Bound for the Green Energy of Point Configurations in Harmonic Manifolds 调和流形中点构型绿色能量的下界
3区 数学
Potential Analysis Pub Date : 2023-10-19 DOI: 10.1007/s11118-023-10108-2
Carlos Beltrán, Víctor de la Torre, Fátima Lizarte
{"title":"Lower Bound for the Green Energy of Point Configurations in Harmonic Manifolds","authors":"Carlos Beltrán, Víctor de la Torre, Fátima Lizarte","doi":"10.1007/s11118-023-10108-2","DOIUrl":"https://doi.org/10.1007/s11118-023-10108-2","url":null,"abstract":"Abstract In this paper, we get the sharpest known to date lower bounds for the minimal Green energy of the compact harmonic manifolds of any dimension. Our proof generalizes previous ad-hoc arguments for the most basic harmonic manifold, i.e. the sphere, extending it to the general case and remarkably simplifying both the conceptual approach and the computations.","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"187 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135730413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Convergence Rate for Extended-Source Internal DLA in the Plane 平面内扩展源DLA的收敛速率研究
3区 数学
Potential Analysis Pub Date : 2023-10-16 DOI: 10.1007/s11118-023-10102-8
David Darrow
{"title":"A Convergence Rate for Extended-Source Internal DLA in the Plane","authors":"David Darrow","doi":"10.1007/s11118-023-10102-8","DOIUrl":"https://doi.org/10.1007/s11118-023-10102-8","url":null,"abstract":"Abstract Internal DLA (IDLA) is an internal aggregation model in which particles perform random walks from the origin, in turn, and stop upon reaching an unoccupied site. Levine and Peres showed that, when particles start instead from fixed multiple-point distributions, the modified IDLA processes have deterministic scaling limits related to a certain obstacle problem. In this paper, we investigate the convergence rate of this “extended source” IDLA in the plane to its scaling limit. We show that, if $$delta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>δ</mml:mi> </mml:math> is the lattice size, fluctuations of the IDLA occupied set are at most of order $$delta ^{3/5}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>/</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:math> from its scaling limit, with probability at least $$1-e^{-1/delta ^{2/5}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>/</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> .","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136077706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Stochastic Klausmeier System and A Stochastic Schauder-Tychonoff Type Theorem 随机Klausmeier系统和一个随机Schauder-Tychonoff型定理
3区 数学
Potential Analysis Pub Date : 2023-10-13 DOI: 10.1007/s11118-023-10107-3
Hausenblas, Erika, Tölle, Jonas M.
{"title":"The Stochastic Klausmeier System and A Stochastic Schauder-Tychonoff Type Theorem","authors":"Hausenblas, Erika, Tölle, Jonas M.","doi":"10.1007/s11118-023-10107-3","DOIUrl":"https://doi.org/10.1007/s11118-023-10107-3","url":null,"abstract":"On the one hand, we investigate the existence and pathwise uniqueness of a nonnegative martingale solution to the stochastic evolution system of nonlinear advection-diffusion equations proposed by Klausmeier with Gaussian multiplicative noise. On the other hand, we present and verify a general stochastic version of the Schauder-Tychonoff fixed point theorem, as its application is an essential step for showing existence of the solution to the stochastic Klausmeier system. The analysis of the system is based both on variational and semigroup techniques. We also discuss additional regularity properties of the solution.","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135805031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Harmonic Bergman Projectors on Homogeneous Trees 齐次树上的谐波Bergman投影
3区 数学
Potential Analysis Pub Date : 2023-10-13 DOI: 10.1007/s11118-023-10106-4
Filippo De Mari, Matteo Monti, Maria Vallarino
{"title":"Harmonic Bergman Projectors on Homogeneous Trees","authors":"Filippo De Mari, Matteo Monti, Maria Vallarino","doi":"10.1007/s11118-023-10106-4","DOIUrl":"https://doi.org/10.1007/s11118-023-10106-4","url":null,"abstract":"Abstract In this paper we investigate some properties of the harmonic Bergman spaces $$mathcal A^p(sigma )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>σ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> on a q -homogeneous tree, where $$qge 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , $$1le p<infty $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>p</mml:mi> <mml:mo><</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> , and $$sigma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>σ</mml:mi> </mml:math> is a finite measure on the tree with radial decreasing density, hence nondoubling. These spaces were introduced by J. Cohen, F. Colonna, M. Picardello and D. Singman. When $$p=2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> they are reproducing kernel Hilbert spaces and we compute explicitely their reproducing kernel. We then study the boundedness properties of the Bergman projector on $$L^p(sigma )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>σ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> for $$1<p<infty $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo><</mml:mo> <mml:mi>p</mml:mi> <mml:mo><</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> and their weak type (1,1) boundedness for radially exponentially decreasing measures on the tree. The weak type (1,1) boundedness is a consequence of the fact that the Bergman kernel satisfies an appropriate integral Hörmander’s condition.","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"255 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dual Spaces for Weak Martingale Hardy Spaces Associated with Rearrangement-Invariant Spaces 与重排不变空间相关的弱鞅Hardy空间的对偶空间
3区 数学
Potential Analysis Pub Date : 2023-10-11 DOI: 10.1007/s11118-023-10104-6
Xingyan Quan, Niyonkuru Silas, Guangheng Xie
{"title":"Dual Spaces for Weak Martingale Hardy Spaces Associated with Rearrangement-Invariant Spaces","authors":"Xingyan Quan, Niyonkuru Silas, Guangheng Xie","doi":"10.1007/s11118-023-10104-6","DOIUrl":"https://doi.org/10.1007/s11118-023-10104-6","url":null,"abstract":"","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"122 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136210534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic Behavior for Multi-scale SDEs with Monotonicity Coefficients Driven by Lévy Processes lsamvy过程驱动的单调系数多尺度SDEs的渐近性
3区 数学
Potential Analysis Pub Date : 2023-10-11 DOI: 10.1007/s11118-023-10105-5
Yinghui Shi, Xiaobin Sun, Liqiong Wang, Yingchao Xie
{"title":"Asymptotic Behavior for Multi-scale SDEs with Monotonicity Coefficients Driven by Lévy Processes","authors":"Yinghui Shi, Xiaobin Sun, Liqiong Wang, Yingchao Xie","doi":"10.1007/s11118-023-10105-5","DOIUrl":"https://doi.org/10.1007/s11118-023-10105-5","url":null,"abstract":"","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136211014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信