Armen Grigoryan, Andrzej Michalski, Dariusz Partyka
{"title":"Extensions of Harmonic Functions of the Complex Plane Slit Along a Line Segment","authors":"Armen Grigoryan, Andrzej Michalski, Dariusz Partyka","doi":"10.1007/s11118-023-10103-7","DOIUrl":null,"url":null,"abstract":"Abstract Let I be a line segment in the complex plane $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> . We describe a method of constructing a bi-Lipschitz sense-preserving mapping of $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> onto itself, which is harmonic in $$\\mathbb C\\setminus I$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>\\</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> and coincides with a given sufficiently regular function $$f:I\\rightarrow \\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>I</mml:mi> <mml:mo>→</mml:mo> <mml:mi>C</mml:mi> </mml:mrow> </mml:math> . As a result we show that a quasiconformal self-mapping of $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> which is harmonic in $$\\mathbb C\\setminus I$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>\\</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> does not have to be harmonic in $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> .","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"30 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11118-023-10103-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let I be a line segment in the complex plane $$\mathbb C$$ C . We describe a method of constructing a bi-Lipschitz sense-preserving mapping of $$\mathbb C$$ C onto itself, which is harmonic in $$\mathbb C\setminus I$$ C\I and coincides with a given sufficiently regular function $$f:I\rightarrow \mathbb C$$ f:I→C . As a result we show that a quasiconformal self-mapping of $$\mathbb C$$ C which is harmonic in $$\mathbb C\setminus I$$ C\I does not have to be harmonic in $$\mathbb C$$ C .
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.