{"title":"平面内扩展源DLA的收敛速率研究","authors":"David Darrow","doi":"10.1007/s11118-023-10102-8","DOIUrl":null,"url":null,"abstract":"Abstract Internal DLA (IDLA) is an internal aggregation model in which particles perform random walks from the origin, in turn, and stop upon reaching an unoccupied site. Levine and Peres showed that, when particles start instead from fixed multiple-point distributions, the modified IDLA processes have deterministic scaling limits related to a certain obstacle problem. In this paper, we investigate the convergence rate of this “extended source” IDLA in the plane to its scaling limit. We show that, if $$\\delta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>δ</mml:mi> </mml:math> is the lattice size, fluctuations of the IDLA occupied set are at most of order $$\\delta ^{3/5}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>/</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:math> from its scaling limit, with probability at least $$1-e^{-1/\\delta ^{2/5}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>/</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Convergence Rate for Extended-Source Internal DLA in the Plane\",\"authors\":\"David Darrow\",\"doi\":\"10.1007/s11118-023-10102-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Internal DLA (IDLA) is an internal aggregation model in which particles perform random walks from the origin, in turn, and stop upon reaching an unoccupied site. Levine and Peres showed that, when particles start instead from fixed multiple-point distributions, the modified IDLA processes have deterministic scaling limits related to a certain obstacle problem. In this paper, we investigate the convergence rate of this “extended source” IDLA in the plane to its scaling limit. We show that, if $$\\\\delta $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>δ</mml:mi> </mml:math> is the lattice size, fluctuations of the IDLA occupied set are at most of order $$\\\\delta ^{3/5}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>/</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:math> from its scaling limit, with probability at least $$1-e^{-1/\\\\delta ^{2/5}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>δ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>/</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> .\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-023-10102-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11118-023-10102-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Convergence Rate for Extended-Source Internal DLA in the Plane
Abstract Internal DLA (IDLA) is an internal aggregation model in which particles perform random walks from the origin, in turn, and stop upon reaching an unoccupied site. Levine and Peres showed that, when particles start instead from fixed multiple-point distributions, the modified IDLA processes have deterministic scaling limits related to a certain obstacle problem. In this paper, we investigate the convergence rate of this “extended source” IDLA in the plane to its scaling limit. We show that, if $$\delta $$ δ is the lattice size, fluctuations of the IDLA occupied set are at most of order $$\delta ^{3/5}$$ δ3/5 from its scaling limit, with probability at least $$1-e^{-1/\delta ^{2/5}}$$ 1-e-1/δ2/5 .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.