Armen Grigoryan, Andrzej Michalski, Dariusz Partyka
{"title":"复平面狭缝调和函数沿线段的扩展","authors":"Armen Grigoryan, Andrzej Michalski, Dariusz Partyka","doi":"10.1007/s11118-023-10103-7","DOIUrl":null,"url":null,"abstract":"Abstract Let I be a line segment in the complex plane $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> . We describe a method of constructing a bi-Lipschitz sense-preserving mapping of $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> onto itself, which is harmonic in $$\\mathbb C\\setminus I$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>\\</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> and coincides with a given sufficiently regular function $$f:I\\rightarrow \\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>I</mml:mi> <mml:mo>→</mml:mo> <mml:mi>C</mml:mi> </mml:mrow> </mml:math> . As a result we show that a quasiconformal self-mapping of $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> which is harmonic in $$\\mathbb C\\setminus I$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>\\</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> does not have to be harmonic in $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensions of Harmonic Functions of the Complex Plane Slit Along a Line Segment\",\"authors\":\"Armen Grigoryan, Andrzej Michalski, Dariusz Partyka\",\"doi\":\"10.1007/s11118-023-10103-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let I be a line segment in the complex plane $$\\\\mathbb C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> . We describe a method of constructing a bi-Lipschitz sense-preserving mapping of $$\\\\mathbb C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> onto itself, which is harmonic in $$\\\\mathbb C\\\\setminus I$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>\\\\</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> and coincides with a given sufficiently regular function $$f:I\\\\rightarrow \\\\mathbb C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>I</mml:mi> <mml:mo>→</mml:mo> <mml:mi>C</mml:mi> </mml:mrow> </mml:math> . As a result we show that a quasiconformal self-mapping of $$\\\\mathbb C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> which is harmonic in $$\\\\mathbb C\\\\setminus I$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>\\\\</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> does not have to be harmonic in $$\\\\mathbb C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> .\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-023-10103-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11118-023-10103-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Extensions of Harmonic Functions of the Complex Plane Slit Along a Line Segment
Abstract Let I be a line segment in the complex plane $$\mathbb C$$ C . We describe a method of constructing a bi-Lipschitz sense-preserving mapping of $$\mathbb C$$ C onto itself, which is harmonic in $$\mathbb C\setminus I$$ C\I and coincides with a given sufficiently regular function $$f:I\rightarrow \mathbb C$$ f:I→C . As a result we show that a quasiconformal self-mapping of $$\mathbb C$$ C which is harmonic in $$\mathbb C\setminus I$$ C\I does not have to be harmonic in $$\mathbb C$$ C .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.