复平面狭缝调和函数沿线段的扩展

IF 1 3区 数学 Q1 MATHEMATICS
Armen Grigoryan, Andrzej Michalski, Dariusz Partyka
{"title":"复平面狭缝调和函数沿线段的扩展","authors":"Armen Grigoryan, Andrzej Michalski, Dariusz Partyka","doi":"10.1007/s11118-023-10103-7","DOIUrl":null,"url":null,"abstract":"Abstract Let I be a line segment in the complex plane $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> . We describe a method of constructing a bi-Lipschitz sense-preserving mapping of $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> onto itself, which is harmonic in $$\\mathbb C\\setminus I$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>\\</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> and coincides with a given sufficiently regular function $$f:I\\rightarrow \\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>I</mml:mi> <mml:mo>→</mml:mo> <mml:mi>C</mml:mi> </mml:mrow> </mml:math> . As a result we show that a quasiconformal self-mapping of $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> which is harmonic in $$\\mathbb C\\setminus I$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>\\</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> does not have to be harmonic in $$\\mathbb C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> .","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"30 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensions of Harmonic Functions of the Complex Plane Slit Along a Line Segment\",\"authors\":\"Armen Grigoryan, Andrzej Michalski, Dariusz Partyka\",\"doi\":\"10.1007/s11118-023-10103-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let I be a line segment in the complex plane $$\\\\mathbb C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> . We describe a method of constructing a bi-Lipschitz sense-preserving mapping of $$\\\\mathbb C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> onto itself, which is harmonic in $$\\\\mathbb C\\\\setminus I$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>\\\\</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> and coincides with a given sufficiently regular function $$f:I\\\\rightarrow \\\\mathbb C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>I</mml:mi> <mml:mo>→</mml:mo> <mml:mi>C</mml:mi> </mml:mrow> </mml:math> . As a result we show that a quasiconformal self-mapping of $$\\\\mathbb C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> which is harmonic in $$\\\\mathbb C\\\\setminus I$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>\\\\</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> does not have to be harmonic in $$\\\\mathbb C$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> .\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-023-10103-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11118-023-10103-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设我是复平面$$\mathbb C$$ C上的一条线段。我们描述了一个构造$$\mathbb C$$ C到自身的双lipschitz保感映射的方法,该映射在$$\mathbb C\setminus I$$ C I中是调和的,并且与给定的充分正则函数$$f:I\rightarrow \mathbb C$$ f: I→C重合。结果表明,$$\mathbb C$$ C的拟共形自映射在$$\mathbb C\setminus I$$ C I中是调和的,并不一定在$$\mathbb C$$ C中是调和的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extensions of Harmonic Functions of the Complex Plane Slit Along a Line Segment
Abstract Let I be a line segment in the complex plane $$\mathbb C$$ C . We describe a method of constructing a bi-Lipschitz sense-preserving mapping of $$\mathbb C$$ C onto itself, which is harmonic in $$\mathbb C\setminus I$$ C \ I and coincides with a given sufficiently regular function $$f:I\rightarrow \mathbb C$$ f : I C . As a result we show that a quasiconformal self-mapping of $$\mathbb C$$ C which is harmonic in $$\mathbb C\setminus I$$ C \ I does not have to be harmonic in $$\mathbb C$$ C .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信