{"title":"$$\\mathbb {S}^7$$和亚椭圆热核上的5阶可琐屑的subriemann结构","authors":"Wolfram Bauer, Abdellah Laaroussi, Daisuke Tarama","doi":"10.1007/s11118-023-10110-8","DOIUrl":null,"url":null,"abstract":"Abstract We present an explicit form of the subelliptic heat kernel of the intrinsic sublaplacian $$\\Delta _{\\textrm{sub}}^5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> induced by a rank 5 trivializable subriemannian structure on the Euclidean seven dimensional sphere $$\\mathbb {S}^7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> . This completes the heat kernel analysis of trivializable subriemannian structures on $$\\mathbb {S}^7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> induced by a Clifford module action on $$\\mathbb {R}^8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>8</mml:mn> </mml:msup> </mml:math> . As an application we derive the spectrum of $$\\Delta _{\\textrm{sub}}^5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> and the Green function of the conformal sublaplacian in an explicit form.","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"1 ","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rank 5 Trivializable Subriemannian Structure on $$\\\\mathbb {S}^7$$ and Subelliptic Heat Kernel\",\"authors\":\"Wolfram Bauer, Abdellah Laaroussi, Daisuke Tarama\",\"doi\":\"10.1007/s11118-023-10110-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present an explicit form of the subelliptic heat kernel of the intrinsic sublaplacian $$\\\\Delta _{\\\\textrm{sub}}^5$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> induced by a rank 5 trivializable subriemannian structure on the Euclidean seven dimensional sphere $$\\\\mathbb {S}^7$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> . This completes the heat kernel analysis of trivializable subriemannian structures on $$\\\\mathbb {S}^7$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> induced by a Clifford module action on $$\\\\mathbb {R}^8$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>8</mml:mn> </mml:msup> </mml:math> . As an application we derive the spectrum of $$\\\\Delta _{\\\\textrm{sub}}^5$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> and the Green function of the conformal sublaplacian in an explicit form.\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"1 \",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-023-10110-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11118-023-10110-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rank 5 Trivializable Subriemannian Structure on $$\mathbb {S}^7$$ and Subelliptic Heat Kernel
Abstract We present an explicit form of the subelliptic heat kernel of the intrinsic sublaplacian $$\Delta _{\textrm{sub}}^5$$ Δsub5 induced by a rank 5 trivializable subriemannian structure on the Euclidean seven dimensional sphere $$\mathbb {S}^7$$ S7 . This completes the heat kernel analysis of trivializable subriemannian structures on $$\mathbb {S}^7$$ S7 induced by a Clifford module action on $$\mathbb {R}^8$$ R8 . As an application we derive the spectrum of $$\Delta _{\textrm{sub}}^5$$ Δsub5 and the Green function of the conformal sublaplacian in an explicit form.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.