$$\mathbb {S}^7$$和亚椭圆热核上的5阶可琐屑的subriemann结构

IF 1 3区 数学 Q1 MATHEMATICS
Wolfram Bauer, Abdellah Laaroussi, Daisuke Tarama
{"title":"$$\\mathbb {S}^7$$和亚椭圆热核上的5阶可琐屑的subriemann结构","authors":"Wolfram Bauer, Abdellah Laaroussi, Daisuke Tarama","doi":"10.1007/s11118-023-10110-8","DOIUrl":null,"url":null,"abstract":"Abstract We present an explicit form of the subelliptic heat kernel of the intrinsic sublaplacian $$\\Delta _{\\textrm{sub}}^5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> induced by a rank 5 trivializable subriemannian structure on the Euclidean seven dimensional sphere $$\\mathbb {S}^7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> . This completes the heat kernel analysis of trivializable subriemannian structures on $$\\mathbb {S}^7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> induced by a Clifford module action on $$\\mathbb {R}^8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>8</mml:mn> </mml:msup> </mml:math> . As an application we derive the spectrum of $$\\Delta _{\\textrm{sub}}^5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> and the Green function of the conformal sublaplacian in an explicit form.","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"1 ","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rank 5 Trivializable Subriemannian Structure on $$\\\\mathbb {S}^7$$ and Subelliptic Heat Kernel\",\"authors\":\"Wolfram Bauer, Abdellah Laaroussi, Daisuke Tarama\",\"doi\":\"10.1007/s11118-023-10110-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present an explicit form of the subelliptic heat kernel of the intrinsic sublaplacian $$\\\\Delta _{\\\\textrm{sub}}^5$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> induced by a rank 5 trivializable subriemannian structure on the Euclidean seven dimensional sphere $$\\\\mathbb {S}^7$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> . This completes the heat kernel analysis of trivializable subriemannian structures on $$\\\\mathbb {S}^7$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> induced by a Clifford module action on $$\\\\mathbb {R}^8$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>8</mml:mn> </mml:msup> </mml:math> . As an application we derive the spectrum of $$\\\\Delta _{\\\\textrm{sub}}^5$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> and the Green function of the conformal sublaplacian in an explicit form.\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"1 \",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-023-10110-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11118-023-10110-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在欧几里得七维球面$$\mathbb {S}^7$$ s7上,给出了由5阶可平凡化的次曼结构导出的本然次拉普拉斯算子$$\Delta _{\textrm{sub}}^5$$ Δ sub - 5的次椭圆热核的显式形式。完成了在$$\mathbb {R}^8$$ r8上Clifford模作用下$$\mathbb {S}^7$$ s7上可琐屑化的次曼结构的热核分析。作为应用,我们以显式形式导出了$$\Delta _{\textrm{sub}}^5$$ Δ次5的谱和保形次placian的Green函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rank 5 Trivializable Subriemannian Structure on $$\mathbb {S}^7$$ and Subelliptic Heat Kernel
Abstract We present an explicit form of the subelliptic heat kernel of the intrinsic sublaplacian $$\Delta _{\textrm{sub}}^5$$ Δ sub 5 induced by a rank 5 trivializable subriemannian structure on the Euclidean seven dimensional sphere $$\mathbb {S}^7$$ S 7 . This completes the heat kernel analysis of trivializable subriemannian structures on $$\mathbb {S}^7$$ S 7 induced by a Clifford module action on $$\mathbb {R}^8$$ R 8 . As an application we derive the spectrum of $$\Delta _{\textrm{sub}}^5$$ Δ sub 5 and the Green function of the conformal sublaplacian in an explicit form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信