{"title":"Rank 5 Trivializable Subriemannian Structure on $$\\mathbb {S}^7$$ and Subelliptic Heat Kernel","authors":"Wolfram Bauer, Abdellah Laaroussi, Daisuke Tarama","doi":"10.1007/s11118-023-10110-8","DOIUrl":null,"url":null,"abstract":"Abstract We present an explicit form of the subelliptic heat kernel of the intrinsic sublaplacian $$\\Delta _{\\textrm{sub}}^5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> induced by a rank 5 trivializable subriemannian structure on the Euclidean seven dimensional sphere $$\\mathbb {S}^7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> . This completes the heat kernel analysis of trivializable subriemannian structures on $$\\mathbb {S}^7$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mn>7</mml:mn> </mml:msup> </mml:math> induced by a Clifford module action on $$\\mathbb {R}^8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>8</mml:mn> </mml:msup> </mml:math> . As an application we derive the spectrum of $$\\Delta _{\\textrm{sub}}^5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mtext>sub</mml:mtext> </mml:mrow> <mml:mn>5</mml:mn> </mml:msubsup> </mml:math> and the Green function of the conformal sublaplacian in an explicit form.","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"1 ","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11118-023-10110-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We present an explicit form of the subelliptic heat kernel of the intrinsic sublaplacian $$\Delta _{\textrm{sub}}^5$$ Δsub5 induced by a rank 5 trivializable subriemannian structure on the Euclidean seven dimensional sphere $$\mathbb {S}^7$$ S7 . This completes the heat kernel analysis of trivializable subriemannian structures on $$\mathbb {S}^7$$ S7 induced by a Clifford module action on $$\mathbb {R}^8$$ R8 . As an application we derive the spectrum of $$\Delta _{\textrm{sub}}^5$$ Δsub5 and the Green function of the conformal sublaplacian in an explicit form.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.