{"title":"Stable and Accurate Least Squares Radial Basis Function Approximations on Bounded Domains","authors":"Ben Adcock, Daan Huybrechs, Cecile Piret","doi":"10.1137/23m1593243","DOIUrl":"https://doi.org/10.1137/23m1593243","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2698-2718, December 2024. <br/> Abstract. The computation of global radial basis function (RBF) approximations requires the solution of a linear system which, depending on the choice of RBF parameters, may be ill-conditioned. We study the stability and accuracy of approximation methods using the Gaussian RBF in all scaling regimes of the associated shape parameter. The approximation is based on discrete least squares with function samples on a bounded domain, using RBF centers both inside and outside the domain. This results in a rectangular linear system. We show for one-dimensional approximations that linear scaling of the shape parameter with the degrees of freedom is optimal, resulting in constant overlap between neighboring RBF’s regardless of their number, and we propose an explicit suitable choice of the proportionality constant. We show numerically that highly accurate approximations to smooth functions can also be obtained on bounded domains in several dimensions, using a linear scaling with the degrees of freedom per dimension. We extend the least squares approach to a collocation-based method for the solution of elliptic boundary value problems and illustrate that the combination of centers outside the domain, oversampling, and optimal scaling can result in accuracy close to machine precision in spite of having to solve very ill-conditioned linear systems.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Second-Order, Global-in-Time Energy Stable Implicit-Explicit Runge–Kutta Scheme for the Phase Field Crystal Equation","authors":"Hong Zhang, Haifeng Wang, Xueqing Teng","doi":"10.1137/24m1637623","DOIUrl":"https://doi.org/10.1137/24m1637623","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2667-2697, December 2024. <br/> Abstract. We develop a two-stage, second-order, global-in-time energy stable implicit-explicit Runge–Kutta (IMEX RK(2, 2)) scheme for the phase field crystal equation with an [math] time step constraint, and without the global Lipschitz assumption. A linear stabilization term is introduced to the system with Fourier pseudo-spectral spatial discretization, and a novel compact reformulation is devised by rewriting the IMEX RK(2, 2) scheme as an approximation to the variation-of-constants formula. Under the assumption that all stage solutions are a priori bounded in the [math] norm, we first demonstrate that the original energy obtained by this second-order scheme is nonincreasing for any time step with a sufficiently large stabilization parameter. To justify the a priori [math] bound assumption, we establish a uniform-in-time [math] estimate for all stage solutions, subject to an [math] time step constraint. This results in a uniform-in-time bound for all stage solutions through discrete Sobolev embedding from [math] to [math]. Consequently, we achieve an [math] stabilization parameter, ensuring global-in-time energy stability. Additionally, we provide an optimal rate convergence analysis and error estimate for the IMEX RK(2, 2) scheme in the [math] norm. The global-in-time energy stability represents a novel achievement for a two-stage, second-order accurate scheme for a gradient flow without the global Lipschitz assumption. Numerical experiments substantiate the second-order accuracy and energy stability of the proposed scheme.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"13 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steffen Dereich, Arnulf Jentzen, Sebastian Kassing
{"title":"On the Existence of Minimizers in Shallow Residual ReLU Neural Network Optimization Landscapes","authors":"Steffen Dereich, Arnulf Jentzen, Sebastian Kassing","doi":"10.1137/23m1556241","DOIUrl":"https://doi.org/10.1137/23m1556241","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2640-2666, December 2024. <br/> Abstract. In this article, we show the existence of minimizers in the loss landscape for residual artificial neural networks (ANNs) with a multidimensional input layer and one hidden layer with ReLU activation. Our work contrasts with earlier results in [D. Gallon, A. Jentzen, and F. Lindner, preprint, arXiv:2211.15641, 2022] and [P. Petersen, M. Raslan, and F. Voigtlaender, Found. Comput. Math., 21 (2021), pp. 375–444] which showed that in many situations minimizers do not exist for common smooth activation functions even in the case where the target functions are polynomials. The proof of the existence property makes use of a closure of the search space containing all functions generated by ANNs and additional discontinuous generalized responses. As we will show, the additional generalized responses in this larger space are suboptimal so that the minimum is attained in the original function class.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"182 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Domain Decomposition Method for Stochastic Evolution Equations","authors":"Evelyn Buckwar, Ana Djurdjevac, Monika Eisenmann","doi":"10.1137/24m1629845","DOIUrl":"https://doi.org/10.1137/24m1629845","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2611-2639, December 2024. <br/> Abstract. In recent years, stochastic partial differential equations (SPDEs) have become a well-studied field in mathematics. With their increase in popularity, it becomes important to efficiently approximate their solutions. Thus, our goal is a contribution towards the development of efficient and practical time-stepping methods for SPDEs. Operator splitting schemes provide powerful, efficient, and flexible numerical methods for deterministic and stochastic differential equations. An example is given by domain decomposition schemes, where one splits the domain into subdomains and constructs the numerical approximation in a divide-and-conquer strategy. Instead of solving one expensive problem on the entire domain, one then deals with cheaper problems on the subdomains. This is particularly useful in modern computer architectures, as the subproblems may often be solved in parallel. While splitting methods have already been used to study domain decomposition methods for deterministic PDEs, this is a new approach for SPDEs. This implies that the existing convergence analysis is not directly applicable, even though the building blocks of the operator splitting domain decomposition method are standard. We provide an abstract convergence analysis of a splitting scheme for stochastic evolution equations and state a domain decomposition scheme as an application of the setting. The theoretical results are verified through numerical experiments.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"81 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms","authors":"Martin J. Gander, Liu-Di Lu","doi":"10.1137/24m1634424","DOIUrl":"https://doi.org/10.1137/24m1634424","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2588-2610, December 2024. <br/> Abstract. We propose to use Neumann–Neumann algorithms for the time parallel solution of unconstrained linear parabolic optimal control problems. We study nine variants, analyze their convergence behavior, and determine the optimal relaxation parameter for each. Our findings indicate that while the most intuitive Neumann–Neumann algorithms act as effective smoothers, there are more efficient Neumann–Neumann solvers available. We support our analysis with numerical experiments.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"6 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. A. Carrillo, F. Hoffmann, A. M. Stuart, U. Vaes
{"title":"The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting","authors":"J. A. Carrillo, F. Hoffmann, A. M. Stuart, U. Vaes","doi":"10.1137/24m1628207","DOIUrl":"https://doi.org/10.1137/24m1628207","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2549-2587, December 2024. <br/> Abstract. The ensemble Kalman filter is widely used in applications because, for high-dimensional filtering problems, it has a robustness that is not shared, for example, by the particle filter; in particular, it does not suffer from weight collapse. However, there is no theory which quantifies its accuracy as an approximation of the true filtering distribution, except in the Gaussian setting. To address this issue, we provide the first analysis of the accuracy of the ensemble Kalman filter beyond the Gaussian setting. We prove two types of results: The first type comprises a stability estimate controlling the error made by the ensemble Kalman filter in terms of the difference between the true filtering distribution and a nearby Gaussian, and the second type uses this stability result to show that, in a neighborhood of Gaussian problems, the ensemble Kalman filter makes a small error in comparison with the true filtering distribution. Our analysis is developed for the mean-field ensemble Kalman filter. We rewrite the update equations for this filter and for the true filtering distribution in terms of maps on probability measures. We introduce a weighted total variation metric to estimate the distance between the two filters, and we prove various stability estimates for the maps defining the evolution of the two filters in this metric. Using these stability estimates, we prove results of the first and second types in the weighted total variation metric. We also provide a generalization of these results to the Gaussian projected filter, which can be viewed as a mean-field description of the unscented Kalman filter.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"29 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Lanczos Tau Framework for Time-Delay Systems: Padé Approximation and Collocation Revisited","authors":"Evert Provoost, Wim Michiels","doi":"10.1137/24m164611x","DOIUrl":"https://doi.org/10.1137/24m164611x","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2529-2548, December 2024. <br/> Abstract. We reformulate the Lanczos tau method for the discretization of time-delay systems in terms of a pencil of operators, allowing for new insights into this approach. As a first main result, we show that, for the choice of a shifted Legendre basis, this method is equivalent to Padé approximation in the frequency domain. We illustrate that Lanczos tau methods straightforwardly give rise to sparse, self-nesting discretizations. Equivalence is also demonstrated with pseudospectral collocation, where the nonzero collocation points are chosen as the zeros of orthogonal polynomials. The importance of such a choice manifests itself in the approximation of the [math]-norm, where, under mild conditions, supergeometric convergence is observed and, for a special case, superconvergence is proved, both of which are significantly faster than the algebraic convergence reported in previous work.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"163 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spherical Designs for Approximations on Spherical Caps","authors":"Chao Li, Xiaojun Chen","doi":"10.1137/23m1555417","DOIUrl":"https://doi.org/10.1137/23m1555417","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2506-2528, December 2024. <br/> Abstract. A spherical [math]-design is a set of points on the unit sphere, which provides an equal weight quadrature rule integrating exactly all spherical polynomials of degree at most [math] and has a sharp error bound for approximations on the sphere. This paper introduces a set of points called a spherical cap [math]-subdesign on a spherical cap [math] with center [math] and radius [math] induced by the spherical [math]-design. We show that the spherical cap [math]-subdesign provides an equal weight quadrature rule integrating exactly all zonal polynomials of degree at most [math] and all functions expanded by orthonormal functions on the spherical cap which are defined by shifted Legendre polynomials of degree at most [math]. We apply the spherical cap [math]-subdesign and the orthonormal basis functions on the spherical cap to non-polynomial approximation of continuous functions on the spherical cap and present theoretical approximation error bounds. We also apply spherical cap [math]-subdesigns to sparse signal recovery on the upper hemisphere, which is a spherical cap with [math]. Our theoretical and numerical results show that spherical cap [math]-subdesigns can provide a good approximation on spherical caps.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"153 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Operator Preconditioned Combined Field Integral Equation for Electromagnetic Scattering","authors":"Van Chien Le, Kristof Cools","doi":"10.1137/23m1581674","DOIUrl":"https://doi.org/10.1137/23m1581674","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2484-2505, December 2024. <br/> Abstract. This paper aims to address two issues of integral equations for the scattering of time-harmonic electromagnetic waves by a perfect electric conductor with Lipschitz continuous boundary: ill-conditioned boundary element Galerkin discretization matrices on fine meshes and instability at spurious resonant frequencies. The remedy to ill-conditioned matrices is operator preconditioning, and resonant instability is eliminated by means of a combined field integral equation. Exterior traces of single and double layer potentials are complemented by their interior counterparts for a purely imaginary wave number. We derive the corresponding variational formulation in the natural trace space for electromagnetic fields and establish its well-posedness for all wave numbers. A Galerkin discretization scheme is employed using conforming edge boundary elements on dual meshes, which produces well-conditioned discrete linear systems of the variational formulation. Some numerical results are also provided to support the numerical analysis.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"63 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Energy-Based Discontinuous Galerkin Method for the Nonlinear Schrödinger Equation with Wave Operator","authors":"Kui Ren, Lu Zhang, Yin Zhou","doi":"10.1137/23m1597496","DOIUrl":"https://doi.org/10.1137/23m1597496","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2459-2483, December 2024. <br/> Abstract. This work develops an energy-based discontinuous Galerkin (EDG) method for the nonlinear Schrödinger equation with the wave operator. The focus of the study is on the energy-conserving or energy-dissipating behavior of the method with some simple mesh-independent numerical fluxes we designed. We establish error estimates in the energy norm that require careful selection of a weak formulation for the auxiliary equation involving the time derivative of the displacement variable. A critical part of the convergence analysis is to establish the [math] error bounds for the time derivative of the approximation error in the displacement variable by using the equation that determines its mean value. Using a special weak formulation, we show that one can create a linear system for the time evolution of the unknowns even when dealing with nonlinear properties in the original problem. Numerical experiments were performed to demonstrate the optimal convergence of the scheme in the [math] norm. These experiments involved specific choices of numerical fluxes combined with specific choices of approximation spaces.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"10 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}