SIAM Journal on Numerical Analysis最新文献

筛选
英文 中文
Two-Scale Finite Element Approximation of a Homogenized Plate Model 均质板模型的双尺度有限元逼近
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2024-09-11 DOI: 10.1137/23m1596272
Martin Rumpf, Stefan Simon, Christoph Smoch
{"title":"Two-Scale Finite Element Approximation of a Homogenized Plate Model","authors":"Martin Rumpf, Stefan Simon, Christoph Smoch","doi":"10.1137/23m1596272","DOIUrl":"https://doi.org/10.1137/23m1596272","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2121-2142, October 2024. <br/> Abstract. This paper studies the discretization of a homogenization and dimension reduction model for the elastic deformation of microstructured thin plates proposed by Hornung, Neukamm, and Velčić [Calc. Var. Partial Differential Equations, 51 (2014), pp. 677–699]. Thereby, a nonlinear bending energy is based on a homogenized quadratic form which acts on the second fundamental form associated with the elastic deformation. Convergence is proved for a multi-affine finite element discretization of the involved three-dimensional microscopic cell problems and a discrete Kirchhoff triangle discretization of the two-dimensional isometry-constrained macroscopic problem. Finally, the convergence properties are numerically verified in selected test cases and qualitatively compared with deformation experiments for microstructured sheets of paper.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"9 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error Analysis Based on Inverse Modified Differential Equations for Discovery of Dynamics Using Linear Multistep Methods and Deep Learning 基于逆修正微分方程的误差分析,利用线性多步骤方法和深度学习发现动力学规律
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2024-09-04 DOI: 10.1137/22m152373x
Aiqing Zhu, Sidi Wu, Yifa Tang
{"title":"Error Analysis Based on Inverse Modified Differential Equations for Discovery of Dynamics Using Linear Multistep Methods and Deep Learning","authors":"Aiqing Zhu, Sidi Wu, Yifa Tang","doi":"10.1137/22m152373x","DOIUrl":"https://doi.org/10.1137/22m152373x","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2087-2120, October 2024. <br/> Abstract. Along with the practical success of the discovery of dynamics using deep learning, the theoretical analysis of this approach has attracted increasing attention. Prior works have established the grid error estimation with auxiliary conditions for the discovery of dynamics using linear multistep methods and deep learning. And we extend the existing error analysis in this work. We first introduce the concept of inverse modified differential equations (IMDE) for linear multistep methods and show that the learned model returns a close approximation of the IMDE. Based on the IMDE, we prove that the error between the discovered system and the target system is bounded by the sum of the LMM discretization error and the learning loss. Furthermore, the learning loss is quantified by combining the approximation and generalization theories of neural networks, and thereby we obtain the priori error estimates. Several numerical experiments are performed to verify the theoretical analysis.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"17 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low Regularity Full Error Estimates for the Cubic Nonlinear Schrödinger Equation 立方非线性薛定谔方程的低正则全误差估计
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2024-09-03 DOI: 10.1137/23m1619617
Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz
{"title":"Low Regularity Full Error Estimates for the Cubic Nonlinear Schrödinger Equation","authors":"Lun Ji, Alexander Ostermann, Frédéric Rousset, Katharina Schratz","doi":"10.1137/23m1619617","DOIUrl":"https://doi.org/10.1137/23m1619617","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2071-2086, October 2024. <br/> Abstract. For the numerical solution of the cubic nonlinear Schrödinger equation with periodic boundary conditions, a pseudospectral method in space combined with a filtered Lie splitting scheme in time is considered. This scheme is shown to converge even for initial data with very low regularity. In particular, for data in [math], where [math], convergence of order [math] is proved in [math]. Here [math] denotes the time step size and [math] the number of Fourier modes considered. The proof of this result is carried out in an abstract framework of discrete Bourgain spaces; the final convergence result, however, is given in [math]. The stated convergence behavior is illustrated by several numerical examples.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"14 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Time Domain Decomposition Methods for Parabolic Optimal Control Problems I: Dirichlet–Neumann and Neumann–Dirichlet Algorithms 抛物线最优控制问题的新时域分解方法 I. Dirichlet-Neumann 和 Neumann-Dirichlet 算法Dirichlet-Neumann 和 Neumann-Dirichlet 算法
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2024-08-23 DOI: 10.1137/23m1584502
Martin J. Gander, Liu-Di Lu
{"title":"New Time Domain Decomposition Methods for Parabolic Optimal Control Problems I: Dirichlet–Neumann and Neumann–Dirichlet Algorithms","authors":"Martin J. Gander, Liu-Di Lu","doi":"10.1137/23m1584502","DOIUrl":"https://doi.org/10.1137/23m1584502","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2048-2070, August 2024. <br/> Abstract. We present new Dirichlet–Neumann and Neumann–Dirichlet algorithms with a time domain decomposition applied to unconstrained parabolic optimal control problems. After a spatial semidiscretization, we use the Lagrange multiplier approach to derive a coupled forward-backward optimality system, which can then be solved using a time domain decomposition. Due to the forward-backward structure of the optimality system, three variants can be found for the Dirichlet–Neumann and Neumann–Dirichlet algorithms. We analyze their convergence behavior and determine the optimal relaxation parameter for each algorithm. Our analysis reveals that the most natural algorithms are actually only good smoothers, and there are better choices which lead to efficient solvers. We illustrate our analysis with numerical experiments.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"4 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Least Squares Approximations in Linear Statistical Inverse Learning Problems 线性统计逆向学习问题中的最小二乘逼近法
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2024-08-22 DOI: 10.1137/22m1538600
Tapio Helin
{"title":"Least Squares Approximations in Linear Statistical Inverse Learning Problems","authors":"Tapio Helin","doi":"10.1137/22m1538600","DOIUrl":"https://doi.org/10.1137/22m1538600","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2025-2047, August 2024. <br/> Abstract. Statistical inverse learning aims at recovering an unknown function [math] from randomly scattered and possibly noisy point evaluations of another function [math], connected to [math] via an ill-posed mathematical model. In this paper we blend statistical inverse learning theory with the classical regularization strategy of applying finite-dimensional projections. Our key finding is that coupling the number of random point evaluations with the choice of projection dimension, one can derive probabilistic convergence rates for the reconstruction error of the maximum likelihood (ML) estimator. Convergence rates in expectation are derived with a ML estimator complemented with a norm-based cutoff operation. Moreover, we prove that the obtained rates are minimax optimal.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"32 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positivity Preserving and Mass Conservative Projection Method for the Poisson–Nernst–Planck Equation 泊松-纳斯特-普朗克方程的正性保持和质量守恒投影法
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2024-08-20 DOI: 10.1137/23m1581649
Fenghua Tong, Yongyong Cai
{"title":"Positivity Preserving and Mass Conservative Projection Method for the Poisson–Nernst–Planck Equation","authors":"Fenghua Tong, Yongyong Cai","doi":"10.1137/23m1581649","DOIUrl":"https://doi.org/10.1137/23m1581649","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2004-2024, August 2024. <br/> Abstract. We propose and analyze a novel approach to construct structure preserving approximations for the Poisson–Nernst–Planck equations, focusing on the positivity preserving and mass conservation properties. The strategy consists of a standard time marching step with a projection (or correction) step to satisfy the desired physical constraints (positivity and mass conservation). Based on the [math] projection, we construct a second order Crank–Nicolson type finite difference scheme, which is linear (exclude the very efficient [math] projection part), positivity preserving, and mass conserving. Rigorous error estimates in the [math] norm are established, which are both second order accurate in space and time. The other choice of projection, e.g., [math] projection, is discussed. Numerical examples are presented to verify the theoretical results and demonstrate the efficiency of the proposed method.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"29 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Domain Decomposition Methods for the Monge–Ampère Equation 蒙日-安培方程的领域分解方法
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2024-08-13 DOI: 10.1137/23m1576839
Yassine Boubendir, Jake Brusca, Brittany F. Hamfeldt, Tadanaga Takahashi
{"title":"Domain Decomposition Methods for the Monge–Ampère Equation","authors":"Yassine Boubendir, Jake Brusca, Brittany F. Hamfeldt, Tadanaga Takahashi","doi":"10.1137/23m1576839","DOIUrl":"https://doi.org/10.1137/23m1576839","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1979-2003, August 2024. <br/> Abstract. We introduce a new overlapping domain decomposition method (DDM) to solve fully nonlinear elliptic partial differential equations (PDEs) approximated with monotone schemes. While DDMs have been extensively studied for linear problems, their application to fully nonlinear PDEs remains limited in the literature. To address this gap, we establish a proof of global convergence of these new iterative algorithms using a discrete comparison principle argument. We also provide a specific implementation for the Monge–Ampère equation. Several numerical tests are performed to validate the convergence theorem. These numerical experiments involve examples of varying regularity. Computational experiments show that method is efficient, robust, and requires relatively few iterations to converge. The results reveal great potential for DDM methods to lead to highly efficient and parallelizable solvers for large-scale problems that are computationally intractable using existing solution methods.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"14 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multistage Discontinuous Petrov–Galerkin Time-Marching Scheme for Nonlinear Problems 非线性问题的多级非连续 Petrov-Galerkin 时间行进方案
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2024-08-09 DOI: 10.1137/23m1598088
Judit Muñoz-Matute, Leszek Demkowicz
{"title":"Multistage Discontinuous Petrov–Galerkin Time-Marching Scheme for Nonlinear Problems","authors":"Judit Muñoz-Matute, Leszek Demkowicz","doi":"10.1137/23m1598088","DOIUrl":"https://doi.org/10.1137/23m1598088","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1956-1978, August 2024. <br/> Abstract. In this article, we employ the construction of the time-marching discontinuous Petrov–Galerkin (DPG) scheme we developed for linear problems to derive high-order multistage DPG methods for nonlinear systems of ordinary differential equations. The methodology extends to abstract evolution equations in Banach spaces, including a class of nonlinear partial differential equations. We present three nested multistage methods: the hybrid Euler method and the two- and three-stage DPG methods. We employ a linearization of the problem as in exponential Rosenbrock methods, so we need to compute exponential actions of the Jacobian that change from time step to time step. The key point of our construction is that one of the stages can be postprocessed from another without an extra exponential step. Therefore, the class of methods we introduce is computationally cheaper than the classical exponential Rosenbrock methods. We provide a full convergence proof to show that the methods are second-, third-, and fourth-order accurate, respectively. We test the convergence in time of our methods on a 2D+time semilinear partial differential equation after a semidiscretization in space.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"13 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Priori Error Estimates of a Poisson Equation with Ventcel Boundary Conditions on Curved Meshes 带 Ventcel 边界条件的泊松方程在曲面网格上的先验误差估计
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2024-08-08 DOI: 10.1137/23m1582497
Fabien Caubet, Joyce Ghantous, Charles Pierre
{"title":"A Priori Error Estimates of a Poisson Equation with Ventcel Boundary Conditions on Curved Meshes","authors":"Fabien Caubet, Joyce Ghantous, Charles Pierre","doi":"10.1137/23m1582497","DOIUrl":"https://doi.org/10.1137/23m1582497","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1929-1955, August 2024. <br/> Abstract. In this work is considered an elliptic problem, referred to as the Ventcel problem, involving a second-order term on the domain boundary (the Laplace–Beltrami operator). A variational formulation of the Ventcel problem is studied, leading to a finite element discretization. The focus is on the construction of high-order curved meshes for the discretization of the physical domain and on the definition of the lift operator, which is aimed at transforming a function defined on the mesh domain into a function defined on the physical one. This lift is defined in such a way as to satisfy adapted properties on the boundary relative to the trace operator. The Ventcel problem approximation is investigated both in terms of geometrical error and of finite element approximation error. Error estimates are obtained both in terms of the mesh order [math] and to the finite element degree [math], whereas such estimates usually have been considered in the isoparametric case so far, involving a single parameter [math]. The numerical experiments we led in both 2 and 3 dimensions allow us to validate the results obtained and proved on the a priori error estimates depending on the 2 parameters [math] and [math]. A numerical comparison is made between the errors using the former lift definition and the lift defined in this work establishing an improvement in the convergence rate of the error in the latter case.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"17 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Explicit and Symmetric Exponential Wave Integrator for the Nonlinear Schrödinger Equation with Low Regularity Potential and Nonlinearity 低正则势能和非线性非线性薛定谔方程的显式对称指数波积分器
IF 2.9 2区 数学
SIAM Journal on Numerical Analysis Pub Date : 2024-08-06 DOI: 10.1137/23m1615656
Weizhu Bao, Chushan Wang
{"title":"An Explicit and Symmetric Exponential Wave Integrator for the Nonlinear Schrödinger Equation with Low Regularity Potential and Nonlinearity","authors":"Weizhu Bao, Chushan Wang","doi":"10.1137/23m1615656","DOIUrl":"https://doi.org/10.1137/23m1615656","url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1901-1928, August 2024. <br/> Abstract. We propose and analyze a novel symmetric Gautschi-type exponential wave integrator (sEWI) for the nonlinear Schrödinger equation (NLSE) with low regularity potential and typical power-type nonlinearity of the form [math] with [math] being the wave function and [math] being the exponent of the nonlinearity. The sEWI is explicit and stable under a time step size restriction independent of the mesh size. We rigorously establish error estimates of the sEWI under various regularity assumptions on potential and nonlinearity. For “good” potential and nonlinearity ([math]-potential and [math]), we establish an optimal second-order error bound in the [math]-norm. For low regularity potential and nonlinearity ([math]-potential and [math]), we obtain a first-order [math]-norm error bound accompanied with a uniform [math]-norm bound of the numerical solution. Moreover, adopting a new technique of regularity compensation oscillation to analyze error cancellation, for some nonresonant time steps, the optimal second-order [math]-norm error bound is proved under a weaker assumption on the nonlinearity: [math]. For all the cases, we also present corresponding fractional order error bounds in the [math]-norm, which is the natural norm in terms of energy. Extensive numerical results are reported to confirm our error estimates and to demonstrate the superiority of the sEWI, including much weaker regularity requirements on potential and nonlinearity, and excellent long-time behavior with near-conservation of mass and energy.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"100 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信