{"title":"时延系统的 Lanczos Tau 框架:帕代逼近与重新定位","authors":"Evert Provoost, Wim Michiels","doi":"10.1137/24m164611x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2529-2548, December 2024. <br/> Abstract. We reformulate the Lanczos tau method for the discretization of time-delay systems in terms of a pencil of operators, allowing for new insights into this approach. As a first main result, we show that, for the choice of a shifted Legendre basis, this method is equivalent to Padé approximation in the frequency domain. We illustrate that Lanczos tau methods straightforwardly give rise to sparse, self-nesting discretizations. Equivalence is also demonstrated with pseudospectral collocation, where the nonzero collocation points are chosen as the zeros of orthogonal polynomials. The importance of such a choice manifests itself in the approximation of the [math]-norm, where, under mild conditions, supergeometric convergence is observed and, for a special case, superconvergence is proved, both of which are significantly faster than the algebraic convergence reported in previous work.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"163 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Lanczos Tau Framework for Time-Delay Systems: Padé Approximation and Collocation Revisited\",\"authors\":\"Evert Provoost, Wim Michiels\",\"doi\":\"10.1137/24m164611x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2529-2548, December 2024. <br/> Abstract. We reformulate the Lanczos tau method for the discretization of time-delay systems in terms of a pencil of operators, allowing for new insights into this approach. As a first main result, we show that, for the choice of a shifted Legendre basis, this method is equivalent to Padé approximation in the frequency domain. We illustrate that Lanczos tau methods straightforwardly give rise to sparse, self-nesting discretizations. Equivalence is also demonstrated with pseudospectral collocation, where the nonzero collocation points are chosen as the zeros of orthogonal polynomials. The importance of such a choice manifests itself in the approximation of the [math]-norm, where, under mild conditions, supergeometric convergence is observed and, for a special case, superconvergence is proved, both of which are significantly faster than the algebraic convergence reported in previous work.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"163 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m164611x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m164611x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Lanczos Tau Framework for Time-Delay Systems: Padé Approximation and Collocation Revisited
SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2529-2548, December 2024. Abstract. We reformulate the Lanczos tau method for the discretization of time-delay systems in terms of a pencil of operators, allowing for new insights into this approach. As a first main result, we show that, for the choice of a shifted Legendre basis, this method is equivalent to Padé approximation in the frequency domain. We illustrate that Lanczos tau methods straightforwardly give rise to sparse, self-nesting discretizations. Equivalence is also demonstrated with pseudospectral collocation, where the nonzero collocation points are chosen as the zeros of orthogonal polynomials. The importance of such a choice manifests itself in the approximation of the [math]-norm, where, under mild conditions, supergeometric convergence is observed and, for a special case, superconvergence is proved, both of which are significantly faster than the algebraic convergence reported in previous work.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.