电磁散射的算子预处理组合场积分方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Van Chien Le, Kristof Cools
{"title":"电磁散射的算子预处理组合场积分方程","authors":"Van Chien Le, Kristof Cools","doi":"10.1137/23m1581674","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2484-2505, December 2024. <br/> Abstract. This paper aims to address two issues of integral equations for the scattering of time-harmonic electromagnetic waves by a perfect electric conductor with Lipschitz continuous boundary: ill-conditioned boundary element Galerkin discretization matrices on fine meshes and instability at spurious resonant frequencies. The remedy to ill-conditioned matrices is operator preconditioning, and resonant instability is eliminated by means of a combined field integral equation. Exterior traces of single and double layer potentials are complemented by their interior counterparts for a purely imaginary wave number. We derive the corresponding variational formulation in the natural trace space for electromagnetic fields and establish its well-posedness for all wave numbers. A Galerkin discretization scheme is employed using conforming edge boundary elements on dual meshes, which produces well-conditioned discrete linear systems of the variational formulation. Some numerical results are also provided to support the numerical analysis.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Operator Preconditioned Combined Field Integral Equation for Electromagnetic Scattering\",\"authors\":\"Van Chien Le, Kristof Cools\",\"doi\":\"10.1137/23m1581674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2484-2505, December 2024. <br/> Abstract. This paper aims to address two issues of integral equations for the scattering of time-harmonic electromagnetic waves by a perfect electric conductor with Lipschitz continuous boundary: ill-conditioned boundary element Galerkin discretization matrices on fine meshes and instability at spurious resonant frequencies. The remedy to ill-conditioned matrices is operator preconditioning, and resonant instability is eliminated by means of a combined field integral equation. Exterior traces of single and double layer potentials are complemented by their interior counterparts for a purely imaginary wave number. We derive the corresponding variational formulation in the natural trace space for electromagnetic fields and establish its well-posedness for all wave numbers. A Galerkin discretization scheme is employed using conforming edge boundary elements on dual meshes, which produces well-conditioned discrete linear systems of the variational formulation. Some numerical results are also provided to support the numerical analysis.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1581674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1581674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》,第 62 卷,第 6 期,第 2484-2505 页,2024 年 12 月。 摘要本文旨在解决具有 Lipschitz 连续边界的完美电导体时谐电磁波散射积分方程的两个问题:细网格上边界元 Galerkin 离散矩阵条件不良和杂散共振频率下的不稳定性。解决矩阵条件不良问题的方法是算子预处理,通过组合场积分方程消除共振不稳定性。对于纯虚数波,单层和双层电势的外部迹线由其内部对应迹线补充。我们在电磁场的自然迹空间中推导出相应的变分公式,并确定了其对所有波数的良好求解性。我们采用了一种 Galerkin 离散化方案,在对偶网格上使用保边边界元素,从而产生了条件良好的离散线性变式系统。还提供了一些数值结果,以支持数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Operator Preconditioned Combined Field Integral Equation for Electromagnetic Scattering
SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2484-2505, December 2024.
Abstract. This paper aims to address two issues of integral equations for the scattering of time-harmonic electromagnetic waves by a perfect electric conductor with Lipschitz continuous boundary: ill-conditioned boundary element Galerkin discretization matrices on fine meshes and instability at spurious resonant frequencies. The remedy to ill-conditioned matrices is operator preconditioning, and resonant instability is eliminated by means of a combined field integral equation. Exterior traces of single and double layer potentials are complemented by their interior counterparts for a purely imaginary wave number. We derive the corresponding variational formulation in the natural trace space for electromagnetic fields and establish its well-posedness for all wave numbers. A Galerkin discretization scheme is employed using conforming edge boundary elements on dual meshes, which produces well-conditioned discrete linear systems of the variational formulation. Some numerical results are also provided to support the numerical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信