{"title":"Spherical Designs for Approximations on Spherical Caps","authors":"Chao Li, Xiaojun Chen","doi":"10.1137/23m1555417","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2506-2528, December 2024. <br/> Abstract. A spherical [math]-design is a set of points on the unit sphere, which provides an equal weight quadrature rule integrating exactly all spherical polynomials of degree at most [math] and has a sharp error bound for approximations on the sphere. This paper introduces a set of points called a spherical cap [math]-subdesign on a spherical cap [math] with center [math] and radius [math] induced by the spherical [math]-design. We show that the spherical cap [math]-subdesign provides an equal weight quadrature rule integrating exactly all zonal polynomials of degree at most [math] and all functions expanded by orthonormal functions on the spherical cap which are defined by shifted Legendre polynomials of degree at most [math]. We apply the spherical cap [math]-subdesign and the orthonormal basis functions on the spherical cap to non-polynomial approximation of continuous functions on the spherical cap and present theoretical approximation error bounds. We also apply spherical cap [math]-subdesigns to sparse signal recovery on the upper hemisphere, which is a spherical cap with [math]. Our theoretical and numerical results show that spherical cap [math]-subdesigns can provide a good approximation on spherical caps.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"153 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1555417","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2506-2528, December 2024. Abstract. A spherical [math]-design is a set of points on the unit sphere, which provides an equal weight quadrature rule integrating exactly all spherical polynomials of degree at most [math] and has a sharp error bound for approximations on the sphere. This paper introduces a set of points called a spherical cap [math]-subdesign on a spherical cap [math] with center [math] and radius [math] induced by the spherical [math]-design. We show that the spherical cap [math]-subdesign provides an equal weight quadrature rule integrating exactly all zonal polynomials of degree at most [math] and all functions expanded by orthonormal functions on the spherical cap which are defined by shifted Legendre polynomials of degree at most [math]. We apply the spherical cap [math]-subdesign and the orthonormal basis functions on the spherical cap to non-polynomial approximation of continuous functions on the spherical cap and present theoretical approximation error bounds. We also apply spherical cap [math]-subdesigns to sparse signal recovery on the upper hemisphere, which is a spherical cap with [math]. Our theoretical and numerical results show that spherical cap [math]-subdesigns can provide a good approximation on spherical caps.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.