{"title":"球形帽上的近似球形设计","authors":"Chao Li, Xiaojun Chen","doi":"10.1137/23m1555417","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2506-2528, December 2024. <br/> Abstract. A spherical [math]-design is a set of points on the unit sphere, which provides an equal weight quadrature rule integrating exactly all spherical polynomials of degree at most [math] and has a sharp error bound for approximations on the sphere. This paper introduces a set of points called a spherical cap [math]-subdesign on a spherical cap [math] with center [math] and radius [math] induced by the spherical [math]-design. We show that the spherical cap [math]-subdesign provides an equal weight quadrature rule integrating exactly all zonal polynomials of degree at most [math] and all functions expanded by orthonormal functions on the spherical cap which are defined by shifted Legendre polynomials of degree at most [math]. We apply the spherical cap [math]-subdesign and the orthonormal basis functions on the spherical cap to non-polynomial approximation of continuous functions on the spherical cap and present theoretical approximation error bounds. We also apply spherical cap [math]-subdesigns to sparse signal recovery on the upper hemisphere, which is a spherical cap with [math]. Our theoretical and numerical results show that spherical cap [math]-subdesigns can provide a good approximation on spherical caps.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherical Designs for Approximations on Spherical Caps\",\"authors\":\"Chao Li, Xiaojun Chen\",\"doi\":\"10.1137/23m1555417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2506-2528, December 2024. <br/> Abstract. A spherical [math]-design is a set of points on the unit sphere, which provides an equal weight quadrature rule integrating exactly all spherical polynomials of degree at most [math] and has a sharp error bound for approximations on the sphere. This paper introduces a set of points called a spherical cap [math]-subdesign on a spherical cap [math] with center [math] and radius [math] induced by the spherical [math]-design. We show that the spherical cap [math]-subdesign provides an equal weight quadrature rule integrating exactly all zonal polynomials of degree at most [math] and all functions expanded by orthonormal functions on the spherical cap which are defined by shifted Legendre polynomials of degree at most [math]. We apply the spherical cap [math]-subdesign and the orthonormal basis functions on the spherical cap to non-polynomial approximation of continuous functions on the spherical cap and present theoretical approximation error bounds. We also apply spherical cap [math]-subdesigns to sparse signal recovery on the upper hemisphere, which is a spherical cap with [math]. Our theoretical and numerical results show that spherical cap [math]-subdesigns can provide a good approximation on spherical caps.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1555417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1555417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Spherical Designs for Approximations on Spherical Caps
SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2506-2528, December 2024. Abstract. A spherical [math]-design is a set of points on the unit sphere, which provides an equal weight quadrature rule integrating exactly all spherical polynomials of degree at most [math] and has a sharp error bound for approximations on the sphere. This paper introduces a set of points called a spherical cap [math]-subdesign on a spherical cap [math] with center [math] and radius [math] induced by the spherical [math]-design. We show that the spherical cap [math]-subdesign provides an equal weight quadrature rule integrating exactly all zonal polynomials of degree at most [math] and all functions expanded by orthonormal functions on the spherical cap which are defined by shifted Legendre polynomials of degree at most [math]. We apply the spherical cap [math]-subdesign and the orthonormal basis functions on the spherical cap to non-polynomial approximation of continuous functions on the spherical cap and present theoretical approximation error bounds. We also apply spherical cap [math]-subdesigns to sparse signal recovery on the upper hemisphere, which is a spherical cap with [math]. Our theoretical and numerical results show that spherical cap [math]-subdesigns can provide a good approximation on spherical caps.