{"title":"抛物线最优控制问题的新时域分解方法 II:诺伊曼-诺伊曼算法","authors":"Martin J. Gander, Liu-Di Lu","doi":"10.1137/24m1634424","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2588-2610, December 2024. <br/> Abstract. We propose to use Neumann–Neumann algorithms for the time parallel solution of unconstrained linear parabolic optimal control problems. We study nine variants, analyze their convergence behavior, and determine the optimal relaxation parameter for each. Our findings indicate that while the most intuitive Neumann–Neumann algorithms act as effective smoothers, there are more efficient Neumann–Neumann solvers available. We support our analysis with numerical experiments.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms\",\"authors\":\"Martin J. Gander, Liu-Di Lu\",\"doi\":\"10.1137/24m1634424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2588-2610, December 2024. <br/> Abstract. We propose to use Neumann–Neumann algorithms for the time parallel solution of unconstrained linear parabolic optimal control problems. We study nine variants, analyze their convergence behavior, and determine the optimal relaxation parameter for each. Our findings indicate that while the most intuitive Neumann–Neumann algorithms act as effective smoothers, there are more efficient Neumann–Neumann solvers available. We support our analysis with numerical experiments.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1634424\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1634424","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms
SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2588-2610, December 2024. Abstract. We propose to use Neumann–Neumann algorithms for the time parallel solution of unconstrained linear parabolic optimal control problems. We study nine variants, analyze their convergence behavior, and determine the optimal relaxation parameter for each. Our findings indicate that while the most intuitive Neumann–Neumann algorithms act as effective smoothers, there are more efficient Neumann–Neumann solvers available. We support our analysis with numerical experiments.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.