抛物线最优控制问题的新时域分解方法 II:诺伊曼-诺伊曼算法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Martin J. Gander, Liu-Di Lu
{"title":"抛物线最优控制问题的新时域分解方法 II:诺伊曼-诺伊曼算法","authors":"Martin J. Gander, Liu-Di Lu","doi":"10.1137/24m1634424","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2588-2610, December 2024. <br/> Abstract. We propose to use Neumann–Neumann algorithms for the time parallel solution of unconstrained linear parabolic optimal control problems. We study nine variants, analyze their convergence behavior, and determine the optimal relaxation parameter for each. Our findings indicate that while the most intuitive Neumann–Neumann algorithms act as effective smoothers, there are more efficient Neumann–Neumann solvers available. We support our analysis with numerical experiments.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms\",\"authors\":\"Martin J. Gander, Liu-Di Lu\",\"doi\":\"10.1137/24m1634424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2588-2610, December 2024. <br/> Abstract. We propose to use Neumann–Neumann algorithms for the time parallel solution of unconstrained linear parabolic optimal control problems. We study nine variants, analyze their convergence behavior, and determine the optimal relaxation parameter for each. Our findings indicate that while the most intuitive Neumann–Neumann algorithms act as effective smoothers, there are more efficient Neumann–Neumann solvers available. We support our analysis with numerical experiments.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1634424\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1634424","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》,第 62 卷,第 6 期,第 2588-2610 页,2024 年 12 月。 摘要。我们建议使用 Neumann-Neumann 算法对无约束线性抛物线最优控制问题进行时间并行求解。我们研究了九种变体,分析了它们的收敛行为,并确定了每种变体的最佳松弛参数。我们的研究结果表明,虽然最直观的诺伊曼-诺伊曼算法是有效的平滑器,但还有更高效的诺伊曼-诺伊曼求解器可用。我们通过数值实验来支持我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms
SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2588-2610, December 2024.
Abstract. We propose to use Neumann–Neumann algorithms for the time parallel solution of unconstrained linear parabolic optimal control problems. We study nine variants, analyze their convergence behavior, and determine the optimal relaxation parameter for each. Our findings indicate that while the most intuitive Neumann–Neumann algorithms act as effective smoothers, there are more efficient Neumann–Neumann solvers available. We support our analysis with numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信