Theoretical Population Biology最新文献

筛选
英文 中文
The mutation process on the ancestral line under selection 祖先品系在选择过程中的变异过程。
IF 1.4 4区 生物学
Theoretical Population Biology Pub Date : 2024-04-17 DOI: 10.1016/j.tpb.2024.04.004
E. Baake , F. Cordero , E. Di Gaspero
{"title":"The mutation process on the ancestral line under selection","authors":"E. Baake ,&nbsp;F. Cordero ,&nbsp;E. Di Gaspero","doi":"10.1016/j.tpb.2024.04.004","DOIUrl":"10.1016/j.tpb.2024.04.004","url":null,"abstract":"<div><p>We consider the Moran model of population genetics with two types, mutation, and selection, and investigate the line of descent of a randomly-sampled individual from a contemporary population. We trace this ancestral line back into the distant past, far beyond the most recent common ancestor of the population (thus connecting population genetics to phylogeny), and analyse the mutation process along this line.</p><p>To this end, we use the pruned lookdown ancestral selection graph (Lenz et al., 2015), which consists of a set of potential ancestors of the sampled individual at any given time. Relative to the neutral case (that is, without selection), we obtain a general bias towards the beneficial type, an increase in the beneficial mutation rate, and a decrease in the deleterious mutation rate. This sheds new light on previous analytical results. We discuss our findings in the light of a well-known observation at the interface of phylogeny and population genetics, namely, the difference in the mutation rates (or, more precisely, mutation fluxes) estimated via phylogenetic methods relative to those observed in pedigree studies.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000376/pdfft?md5=92245f3e3bf3575e7c165660cf7cbf4f&pid=1-s2.0-S0040580924000376-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140793784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indirect interaction between an endemic and an invading pathogen: A case study of Plasmodium and Usutu virus dynamics in a shared bird host population 地方病与入侵病原体之间的间接相互作用:疟原虫和乌苏图病毒在鸟类共同宿主种群中的动态案例研究
IF 1.4 4区 生物学
Theoretical Population Biology Pub Date : 2024-04-16 DOI: 10.1016/j.tpb.2024.04.002
Afonso Dimas Martins , Mick Roberts , Quirine ten Bosch , Hans Heesterbeek
{"title":"Indirect interaction between an endemic and an invading pathogen: A case study of Plasmodium and Usutu virus dynamics in a shared bird host population","authors":"Afonso Dimas Martins ,&nbsp;Mick Roberts ,&nbsp;Quirine ten Bosch ,&nbsp;Hans Heesterbeek","doi":"10.1016/j.tpb.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.tpb.2024.04.002","url":null,"abstract":"<div><p>Infectious disease agents can influence each other’s dynamics in shared host populations. We consider such influence for two mosquito-borne infections where one pathogen is endemic at the time that a second pathogen invades. We regard a setting where the vector has a bias towards biting host individuals infected with the endemic pathogen and where there is a cost to co-infected hosts. As a motivating case study, we regard <em>Plasmodium</em> spp., that cause avian malaria, as the endemic pathogen, and Usutu virus (USUV) as the invading pathogen. Hosts with malaria attract more mosquitoes compared to susceptible hosts, a phenomenon named vector bias. The possible trade-off between the vector-bias effect and the co-infection mortality is studied using a compartmental epidemic model. We focus first on the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> for Usutu virus invading into a malaria-endemic population, and then explore the long-term dynamics of both pathogens once Usutu virus has become established. We find that the vector bias facilitates the introduction of malaria into a susceptible population, as well as the introduction of Usutu in a malaria-endemic population. In the long term, however, both a vector bias and co-infection mortality lead to a decrease in the number of individuals infected with either pathogen, suggesting that avian malaria is unlikely to be a promoter of Usutu invasion. This proposed approach is general and allows for new insights into other negative associations between endemic and invading vector-borne pathogens.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000352/pdfft?md5=4284ef33f0fe5b3f5e85cb6433600d6b&pid=1-s2.0-S0040580924000352-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140618248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond fitness: The information imparted in population states by selection throughout lifecycles 超越适应性:整个生命周期中的选择为种群状态提供的信息
IF 1.4 4区 生物学
Theoretical Population Biology Pub Date : 2024-04-13 DOI: 10.1016/j.tpb.2024.04.003
Eric Smith
{"title":"Beyond fitness: The information imparted in population states by selection throughout lifecycles","authors":"Eric Smith","doi":"10.1016/j.tpb.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.tpb.2024.04.003","url":null,"abstract":"<div><p>We approach the questions, what part of evolutionary change results from selection, and what is the adaptive information flow into a population undergoing selection, as a problem of quantifying the divergence of typical trajectories realized under selection from the expected dynamics of their counterparts under a null stochastic-process model representing the absence of selection. This approach starts with a formulation of adaptation in terms of information and from that identifies selection from the genetic parameters that generate information flow; it is the reverse of a historical approach that defines selection in terms of fitness, and then identifies adaptive characters as those amplified in relative frequency by fitness. Adaptive information is a relative entropy on distributions of histories computed directly from the generators of stochastic evolutionary population processes, which in large population limits can be approximated by its leading exponential dependence as a large-deviation function. We study a particular class of generators that represent the genetic dependence of explicit transitions around reproductive cycles in terms of stoichiometry, familiar from chemical reaction networks. Following Smith (2023), which showed that partitioning evolutionary events among genetically distinct realizations of lifecycles yields a more consistent causal analysis through the Price equation than the construction from units of selection and fitness, here we show that it likewise yields more complete evolutionary information measures.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000364/pdfft?md5=ab76042f06b1a1f92eb4084df971bd79&pid=1-s2.0-S0040580924000364-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140558903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The expected sample allele frequencies from populations of changing size via orthogonal polynomials 通过正交多项式从规模不断变化的种群中得到预期的等位基因频率样本。
IF 1.4 4区 生物学
Theoretical Population Biology Pub Date : 2024-03-27 DOI: 10.1016/j.tpb.2024.03.005
Lynette Caitlin Mikula , Claus Vogl
{"title":"The expected sample allele frequencies from populations of changing size via orthogonal polynomials","authors":"Lynette Caitlin Mikula ,&nbsp;Claus Vogl","doi":"10.1016/j.tpb.2024.03.005","DOIUrl":"10.1016/j.tpb.2024.03.005","url":null,"abstract":"<div><p>In this article, discrete and stochastic changes in (effective) population size are incorporated into the spectral representation of a biallelic diffusion process for drift and small mutation rates. A forward algorithm inspired by Hidden-Markov-Model (HMM) literature is used to compute exact sample allele frequency spectra for three demographic scenarios: single changes in (effective) population size, boom-bust dynamics, and stochastic fluctuations in (effective) population size. An approach for fully agnostic demographic inference from these sample allele spectra is explored, and sufficient statistics for stepwise changes in population size are found. Further, convergence behaviours of the polymorphic sample spectra for population size changes on different time scales are examined and discussed within the context of inference of the effective population size. Joint visual assessment of the sample spectra and the temporal coefficients of the spectral decomposition of the forward diffusion process is found to be important in determining departure from equilibrium. Stochastic changes in (effective) population size are shown to shape sample spectra particularly strongly.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000339/pdfft?md5=b5dc535787bdc66776c8198cab2cd0d6&pid=1-s2.0-S0040580924000339-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interconnection between density-regulation and stability in competitive ecological network 竞争性生态网络中密度调节与稳定性之间的相互联系。
IF 1.4 4区 生物学
Theoretical Population Biology Pub Date : 2024-03-21 DOI: 10.1016/j.tpb.2024.03.003
Amit Samadder , Arnab Chattopadhyay , Anurag Sau , Sabyasachi Bhattacharya
{"title":"Interconnection between density-regulation and stability in competitive ecological network","authors":"Amit Samadder ,&nbsp;Arnab Chattopadhyay ,&nbsp;Anurag Sau ,&nbsp;Sabyasachi Bhattacharya","doi":"10.1016/j.tpb.2024.03.003","DOIUrl":"10.1016/j.tpb.2024.03.003","url":null,"abstract":"<div><p>In natural ecosystems, species can be characterized by the nonlinear density-dependent self-regulation of their growth profile. Species of many taxa show a substantial density-dependent reduction for low population size. Nevertheless, many show the opposite trend; density regulation is minimal for small populations and increases significantly when the population size is near the carrying capacity. The theta-logistic growth equation can portray the intraspecific density regulation in the growth profile, theta being the density regulation parameter. In this study, we examine the role of these different growth profiles on the stability of a competitive ecological community with the help of a mathematical model of competitive species interactions. This manuscript deals with the random matrix theory to understand the stability of the classical theta-logistic models of competitive interactions. Our results suggest that having more species with strong density dependence, which self-regulate at low densities, leads to more stable communities. With this, stability also depends on the complexity of the ecological network. Species network connectance (link density) shows a consistent trend of increasing stability, whereas community size (species richness) shows a context-dependent effect. We also interpret our results from the aspect of two different life history strategies: r and K-selection. Our results show that the stability of a competitive network increases with the fraction of r-selected species in the community. Our result is robust, irrespective of different network architectures.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140194934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical model of rabies vaccination in the United States 美国狂犬病疫苗接种的数学模型。
IF 1.4 4区 生物学
Theoretical Population Biology Pub Date : 2024-03-21 DOI: 10.1016/j.tpb.2024.03.004
Annalise Hassan , Zoe A. Tapp , Dan K. Tran , Jan Rychtář , Dewey Taylor
{"title":"Mathematical model of rabies vaccination in the United States","authors":"Annalise Hassan ,&nbsp;Zoe A. Tapp ,&nbsp;Dan K. Tran ,&nbsp;Jan Rychtář ,&nbsp;Dewey Taylor","doi":"10.1016/j.tpb.2024.03.004","DOIUrl":"10.1016/j.tpb.2024.03.004","url":null,"abstract":"<div><p>Rabies is one of the oldest viral diseases and it has been present on every continent except Antarctica. Within the U.S. human rabies cases are quite rare. In the eastern USA, raccoons are the main reservoir hosts and pet vaccination serves as an important barrier against human rabies exposure. In this paper, we develop a compartmental model for rabies transmission amongst raccoons and domestic pets. We find the disease-free equilibria, reproduction numbers for the raccoons and domestic pets. We also determine the vaccination coverage/rates, both for raccoons and pets, needed to achieve the elimination of rabies.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140194935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demographic inference for spatially heterogeneous populations using long shared haplotypes 利用长共享单倍型对空间异质性种群进行人口推断。
IF 1.2 4区 生物学
Theoretical Population Biology Pub Date : 2024-03-16 DOI: 10.1016/j.tpb.2024.03.002
{"title":"Demographic inference for spatially heterogeneous populations using long shared haplotypes","authors":"","doi":"10.1016/j.tpb.2024.03.002","DOIUrl":"10.1016/j.tpb.2024.03.002","url":null,"abstract":"<div><p>We introduce a modified spatial <span><math><mi>Λ</mi></math></span>-Fleming–Viot process to model the ancestry of individuals in a population occupying a continuous spatial habitat divided into two areas by a sharp discontinuity of the dispersal rate and effective population density. We derive an analytical formula for the expected number of shared haplotype segments between two individuals depending on their sampling locations. This formula involves the transition density of a skew diffusion which appears as a scaling limit of the ancestral lineages of individuals in this model. We then show that this formula can be used to infer the dispersal parameters and the effective population density of both regions, using a composite likelihood approach, and we demonstrate the efficiency of this method on a range of simulated data sets.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000285/pdfft?md5=83582755d2ad3c07d32cc176757e368e&pid=1-s2.0-S0040580924000285-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140140979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutral diversity in experimental metapopulations 实验性元种群的中性多样性。
IF 1.4 4区 生物学
Theoretical Population Biology Pub Date : 2024-03-15 DOI: 10.1016/j.tpb.2024.02.011
Guilhem Doulcier , Amaury Lambert
{"title":"Neutral diversity in experimental metapopulations","authors":"Guilhem Doulcier ,&nbsp;Amaury Lambert","doi":"10.1016/j.tpb.2024.02.011","DOIUrl":"10.1016/j.tpb.2024.02.011","url":null,"abstract":"<div><p>New automated and high-throughput methods allow the manipulation and selection of numerous bacterial populations. In this manuscript we are interested in the neutral diversity patterns that emerge from such a setup in which many bacterial populations are grown in parallel serial transfers, in some cases with population-wide extinction and splitting events. We model bacterial growth by a birth–death process and use the theory of coalescent point processes. We show that there is a dilution factor that optimises the expected amount of neutral diversity for a given number of cycles, and study the power law behaviour of the mutation frequency spectrum for different experimental regimes. We also explore how neutral variation diverges between two recently split populations by establishing a new formula for the expected number of shared and private mutations. Finally, we show the interest of such a setup to select a phenotype of interest that requires multiple mutations.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000200/pdfft?md5=f7a882f8520e75e3eb7e0ffeef1dcb3b&pid=1-s2.0-S0040580924000200-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ancestral selection graph for a Λ-asymmetric Moran model Λ-不对称莫兰模型的祖先选择图。
IF 1.2 4区 生物学
Theoretical Population Biology Pub Date : 2024-03-13 DOI: 10.1016/j.tpb.2024.02.010
{"title":"The ancestral selection graph for a Λ-asymmetric Moran model","authors":"","doi":"10.1016/j.tpb.2024.02.010","DOIUrl":"10.1016/j.tpb.2024.02.010","url":null,"abstract":"<div><p>Motivated by the question of the impact of selective advantage in populations with skewed reproduction mechanisms, we study a Moran model with selection. We assume that there are two types of individuals, where the reproductive success of one type is larger than the other. The higher reproductive success may stem from either more frequent reproduction, or from larger numbers of offspring, and is encoded in a measure <span><math><mi>Λ</mi></math></span> for each of the two types. <span><math><mi>Λ</mi></math></span>-reproduction here means that a whole fraction of the population is replaced at a reproductive event. Our approach consists of constructing a <span><math><mi>Λ</mi></math></span>-asymmetric Moran model in which individuals of the two populations compete, rather than considering a Moran model for each population. Provided the measure are ordered stochastically, we can couple them. This allows us to construct the central object of this paper, the <span><math><mrow><mi>Λ</mi><mo>−</mo></mrow></math></span>asymmetric ancestral selection graph, leading to a pathwise duality of the forward in time <span><math><mi>Λ</mi></math></span>-asymmetric Moran model with its ancestral process. We apply the ancestral selection graph in order to obtain scaling limits of the forward and backward processes, and note that the frequency process converges to the solution of an SDE with discontinuous paths. Finally, we derive a Griffiths representation for the generator of the SDE and use it to find a semi-explicit formula for the probability of fixation of the less beneficial of the two types.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000194/pdfft?md5=c0dce179bca40926eed0fec256704b68&pid=1-s2.0-S0040580924000194-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase-type distributions in mathematical population genetics: An emerging framework 数学群体遗传学中的相型分布:新出现的框架
IF 1.4 4区 生物学
Theoretical Population Biology Pub Date : 2024-03-07 DOI: 10.1016/j.tpb.2024.03.001
Asger Hobolth , Iker Rivas-González , Mogens Bladt , Andreas Futschik
{"title":"Phase-type distributions in mathematical population genetics: An emerging framework","authors":"Asger Hobolth ,&nbsp;Iker Rivas-González ,&nbsp;Mogens Bladt ,&nbsp;Andreas Futschik","doi":"10.1016/j.tpb.2024.03.001","DOIUrl":"10.1016/j.tpb.2024.03.001","url":null,"abstract":"<div><p>A phase-type distribution is the time to absorption in a continuous- or discrete-time Markov chain. Phase-type distributions can be used as a general framework to calculate key properties of the standard coalescent model and many of its extensions. Here, the ‘phases’ in the phase-type distribution correspond to states in the ancestral process. For example, the time to the most recent common ancestor and the total branch length are phase-type distributed. Furthermore, the site frequency spectrum follows a multivariate discrete phase-type distribution and the joint distribution of total branch lengths in the two-locus coalescent-with-recombination model is multivariate phase-type distributed. In general, phase-type distributions provide a powerful mathematical framework for coalescent theory because they are analytically tractable using matrix manipulations. The purpose of this review is to explain the phase-type theory and demonstrate how the theory can be applied to derive basic properties of coalescent models. These properties can then be used to obtain insight into the ancestral process, or they can be applied for statistical inference. In particular, we show the relation between classical first-step analysis of coalescent models and phase-type calculations. We also show how reward transformations in phase-type theory lead to easy calculation of covariances and correlation coefficients between e.g. tree height, tree length, external branch length, and internal branch length. Furthermore, we discuss how these quantities can be used for statistical inference based on estimating equations. Providing an alternative to previous work based on the Laplace transform, we derive likelihoods for small-size coalescent trees based on phase-type theory. Overall, our main aim is to demonstrate that phase-type distributions provide a convenient general set of tools to understand aspects of coalescent models that are otherwise difficult to derive. Throughout the review, we emphasize the versatility of the phase-type framework, which is also illustrated by our accompanying R-code. All our analyses and figures can be reproduced from code available on GitHub.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000212/pdfft?md5=635096b59c3865e96b03602b5158c0b9&pid=1-s2.0-S0040580924000212-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信