Anna M Langmüller, Joachim Hermisson, Courtney C Murdock, Philipp W Messer
{"title":"Catching a wave: On the suitability of traveling-wave solutions in epidemiological modeling.","authors":"Anna M Langmüller, Joachim Hermisson, Courtney C Murdock, Philipp W Messer","doi":"10.1016/j.tpb.2024.12.004","DOIUrl":null,"url":null,"abstract":"<p><p>Ordinary differential equation models such as the classical SIR model are widely used in epidemiology to study and predict infectious disease dynamics. However, these models typically assume that populations are homogeneously mixed, ignoring possible variations in disease prevalence due to spatial heterogeneity. To address this issue, reaction-diffusion models have been proposed as an alternative approach to modeling spatially continuous populations in which individuals move in a diffusive manner. In this study, we explore the conditions under which such spatial structure must be explicitly considered to accurately predict disease spread, and when the assumption of homogeneous mixing remains adequate. In particular, we derive a critical threshold for the diffusion coefficient below which disease transmission dynamics exhibit spatial heterogeneity. We validate our analytical results with individual-based simulations of disease transmission across a two-dimensional continuous landscape. Using this framework, we further explore how key epidemiological parameters such as the probability of disease establishment, its maximum incidence, and its final epidemic size are affected by incorporating spatial structure into SI, SIS, and SIR models. We discuss the implications of our findings for epidemiological modeling and identify design considerations and limitations for spatial simulation models of disease dynamics.</p>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tpb.2024.12.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ordinary differential equation models such as the classical SIR model are widely used in epidemiology to study and predict infectious disease dynamics. However, these models typically assume that populations are homogeneously mixed, ignoring possible variations in disease prevalence due to spatial heterogeneity. To address this issue, reaction-diffusion models have been proposed as an alternative approach to modeling spatially continuous populations in which individuals move in a diffusive manner. In this study, we explore the conditions under which such spatial structure must be explicitly considered to accurately predict disease spread, and when the assumption of homogeneous mixing remains adequate. In particular, we derive a critical threshold for the diffusion coefficient below which disease transmission dynamics exhibit spatial heterogeneity. We validate our analytical results with individual-based simulations of disease transmission across a two-dimensional continuous landscape. Using this framework, we further explore how key epidemiological parameters such as the probability of disease establishment, its maximum incidence, and its final epidemic size are affected by incorporating spatial structure into SI, SIS, and SIR models. We discuss the implications of our findings for epidemiological modeling and identify design considerations and limitations for spatial simulation models of disease dynamics.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.