物种共存是相互作用机制的一种涌现效应。

IF 1.2 4区 生物学 Q4 ECOLOGY
Thomas Seidelmann, Sanaz Mostaghim
{"title":"物种共存是相互作用机制的一种涌现效应。","authors":"Thomas Seidelmann,&nbsp;Sanaz Mostaghim","doi":"10.1016/j.tpb.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>Although extensively studied, the maintenance of biodiversity remains a highly debated and investigated topic of contemporary research in ecology. Several studies have quantified the contributions of various coexistence mechanisms to biodiversity. However, often stochastic individual-level interactions are abstracted away, or mechanisms are studied in isolation. The intertwined nature and reciprocal influences between mechanisms, as they arise from individual-level interactions, are therefore rarely considered. We propose a novel mechanistic simulation model grounded in neutral theory to capture and quantify emergent effects arising from such mechanism interactions. Three coexistence mechanisms are supported: storage effect, intransitivity, and resource partitioning. We show that basic neutral dynamics and related models of isolated mechanisms can be replicated. Beyond that, we observe difficult to predict, yet significant emergent effects for mechanism combinations. In some cases, coexistence times could be extended more than tenfold compared to the individual mechanisms’ performances. Our findings suggest that studies of individual coexistence mechanisms might be insufficient and indeed misleading for quantifying their overall impact on biodiversity. The particular combination of mechanisms and their interactions appear to be of vital importance.</div></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"162 ","pages":"Pages 13-21"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Species coexistence as an emergent effect of interacting mechanisms\",\"authors\":\"Thomas Seidelmann,&nbsp;Sanaz Mostaghim\",\"doi\":\"10.1016/j.tpb.2024.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although extensively studied, the maintenance of biodiversity remains a highly debated and investigated topic of contemporary research in ecology. Several studies have quantified the contributions of various coexistence mechanisms to biodiversity. However, often stochastic individual-level interactions are abstracted away, or mechanisms are studied in isolation. The intertwined nature and reciprocal influences between mechanisms, as they arise from individual-level interactions, are therefore rarely considered. We propose a novel mechanistic simulation model grounded in neutral theory to capture and quantify emergent effects arising from such mechanism interactions. Three coexistence mechanisms are supported: storage effect, intransitivity, and resource partitioning. We show that basic neutral dynamics and related models of isolated mechanisms can be replicated. Beyond that, we observe difficult to predict, yet significant emergent effects for mechanism combinations. In some cases, coexistence times could be extended more than tenfold compared to the individual mechanisms’ performances. Our findings suggest that studies of individual coexistence mechanisms might be insufficient and indeed misleading for quantifying their overall impact on biodiversity. The particular combination of mechanisms and their interactions appear to be of vital importance.</div></div>\",\"PeriodicalId\":49437,\"journal\":{\"name\":\"Theoretical Population Biology\",\"volume\":\"162 \",\"pages\":\"Pages 13-21\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Population Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580924001084\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924001084","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管被广泛研究,生物多样性的维持仍然是当代生态学研究中一个备受争议和调查的话题。一些研究量化了各种共存机制对生物多样性的贡献。然而,通常随机的个人层面的相互作用是抽象出来的,或者是孤立地研究机制。因此,很少考虑机制之间的相互交织性质和相互影响,因为它们源于个人层面的相互作用。我们提出了一种基于中性理论的新型机制模拟模型,以捕获和量化由这种机制相互作用产生的紧急效应。它支持三种共存机制:存储效应、不可传递性和资源分区。我们证明了基本的中性动力学和孤立机制的相关模型可以被复制。除此之外,我们观察到难以预测,但显着的机制组合的紧急效应。在某些情况下,与单个机制性能相比,共存时间可能延长十倍以上。我们的研究结果表明,个体共存机制的研究可能是不充分的,并且在量化它们对生物多样性的总体影响方面确实具有误导性。机制及其相互作用的特殊组合似乎是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Species coexistence as an emergent effect of interacting mechanisms
Although extensively studied, the maintenance of biodiversity remains a highly debated and investigated topic of contemporary research in ecology. Several studies have quantified the contributions of various coexistence mechanisms to biodiversity. However, often stochastic individual-level interactions are abstracted away, or mechanisms are studied in isolation. The intertwined nature and reciprocal influences between mechanisms, as they arise from individual-level interactions, are therefore rarely considered. We propose a novel mechanistic simulation model grounded in neutral theory to capture and quantify emergent effects arising from such mechanism interactions. Three coexistence mechanisms are supported: storage effect, intransitivity, and resource partitioning. We show that basic neutral dynamics and related models of isolated mechanisms can be replicated. Beyond that, we observe difficult to predict, yet significant emergent effects for mechanism combinations. In some cases, coexistence times could be extended more than tenfold compared to the individual mechanisms’ performances. Our findings suggest that studies of individual coexistence mechanisms might be insufficient and indeed misleading for quantifying their overall impact on biodiversity. The particular combination of mechanisms and their interactions appear to be of vital importance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Population Biology
Theoretical Population Biology 生物-进化生物学
CiteScore
2.50
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena. Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信