Effect of competition on emergent phases and phase transitions in competitive systems.

IF 1.2 4区 生物学 Q4 ECOLOGY
Shikun Wang, Yuanshi Wang, Hong Wu
{"title":"Effect of competition on emergent phases and phase transitions in competitive systems.","authors":"Shikun Wang, Yuanshi Wang, Hong Wu","doi":"10.1016/j.tpb.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>This paper considers Lotka-Volterra competitive systems characterizing laboratory experiment by Hu et al. (Science, 378:85-89, 2022). Using dynamical systems theory and projection method, we give theoretical analysis and numerical simulation on the model with four species by demonstrating equilibrium stability, periodic oscillation and chaotic fluctuation in the systems. It is shown that varying one competition strength could lead to emergent phases and phase transitions between stable full coexistence, stable partial coexistence, stable persistence of a unique species, persistent periodic oscillation, and persistent chaotic fluctuation in a smooth fashion. Here, the stronger the competition is, the less the number of stable coexisting species, or the higher the amplitude of periodic oscillation, or the more irregular the fluctuation. Our results are consistent with experimental observation and provide new insight. This work is important in understanding effect of competition on emergent phases and phase transitions in competitive systems.</p>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":" ","pages":"34-41"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tpb.2024.12.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers Lotka-Volterra competitive systems characterizing laboratory experiment by Hu et al. (Science, 378:85-89, 2022). Using dynamical systems theory and projection method, we give theoretical analysis and numerical simulation on the model with four species by demonstrating equilibrium stability, periodic oscillation and chaotic fluctuation in the systems. It is shown that varying one competition strength could lead to emergent phases and phase transitions between stable full coexistence, stable partial coexistence, stable persistence of a unique species, persistent periodic oscillation, and persistent chaotic fluctuation in a smooth fashion. Here, the stronger the competition is, the less the number of stable coexisting species, or the higher the amplitude of periodic oscillation, or the more irregular the fluctuation. Our results are consistent with experimental observation and provide new insight. This work is important in understanding effect of competition on emergent phases and phase transitions in competitive systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Population Biology
Theoretical Population Biology 生物-进化生物学
CiteScore
2.50
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena. Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信