{"title":"Effect of competition on emergent phases and phase transitions in competitive systems.","authors":"Shikun Wang, Yuanshi Wang, Hong Wu","doi":"10.1016/j.tpb.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>This paper considers Lotka-Volterra competitive systems characterizing laboratory experiment by Hu et al. (Science, 378:85-89, 2022). Using dynamical systems theory and projection method, we give theoretical analysis and numerical simulation on the model with four species by demonstrating equilibrium stability, periodic oscillation and chaotic fluctuation in the systems. It is shown that varying one competition strength could lead to emergent phases and phase transitions between stable full coexistence, stable partial coexistence, stable persistence of a unique species, persistent periodic oscillation, and persistent chaotic fluctuation in a smooth fashion. Here, the stronger the competition is, the less the number of stable coexisting species, or the higher the amplitude of periodic oscillation, or the more irregular the fluctuation. Our results are consistent with experimental observation and provide new insight. This work is important in understanding effect of competition on emergent phases and phase transitions in competitive systems.</p>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":" ","pages":"34-41"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tpb.2024.12.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers Lotka-Volterra competitive systems characterizing laboratory experiment by Hu et al. (Science, 378:85-89, 2022). Using dynamical systems theory and projection method, we give theoretical analysis and numerical simulation on the model with four species by demonstrating equilibrium stability, periodic oscillation and chaotic fluctuation in the systems. It is shown that varying one competition strength could lead to emergent phases and phase transitions between stable full coexistence, stable partial coexistence, stable persistence of a unique species, persistent periodic oscillation, and persistent chaotic fluctuation in a smooth fashion. Here, the stronger the competition is, the less the number of stable coexisting species, or the higher the amplitude of periodic oscillation, or the more irregular the fluctuation. Our results are consistent with experimental observation and provide new insight. This work is important in understanding effect of competition on emergent phases and phase transitions in competitive systems.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.