Granular Matter最新文献

筛选
英文 中文
The role of granular matter in additive manufacturing 颗粒物质在增材制造中的作用
IF 2.4 3区 工程技术
Granular Matter Pub Date : 2024-10-10 DOI: 10.1007/s10035-024-01473-9
Sudeshna Roy, Thomas Weinhart
{"title":"The role of granular matter in additive manufacturing","authors":"Sudeshna Roy,&nbsp;Thomas Weinhart","doi":"10.1007/s10035-024-01473-9","DOIUrl":"10.1007/s10035-024-01473-9","url":null,"abstract":"<p>Additive manufacturing, particularly in granular systems, has revolutionized industries such as aerospace, medical engineering, and automotive manufacturing by enabling complex, customized designs. A critical aspect of additive manufacturing is powder handling, which involves challenges related to deposition, packing density, and safety. Numerical simulations, including the discrete element method and smoothed particle hydrodynamics, play an essential role in optimizing these processes. Inspired by the <i>DEM9</i> conference, where several authors were invited to contribute, this editorial highlights ongoing granular research on additive manufacturing. Previously not extensively covered in <i>Granular Matter</i>, this topical collection showcases novel work to establish additive manufacturing more prominently within the journal. Through contributions on powder spreading, material structure, and innovative computational models, this issue enhances the understanding of additive manufacturing processes and their industrial applications.</p>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A discrete element study on sand response to cyclic loading: macro-micro perspectives 离散元素研究:砂对循环加载的响应:宏观与微观视角
IF 2.4 3区 工程技术
Granular Matter Pub Date : 2024-10-09 DOI: 10.1007/s10035-024-01467-7
Alice Ezzeddine, Bogdan Cazacliu, Patrick Richard, Luc Thorel, Riccardo Artoni
{"title":"A discrete element study on sand response to cyclic loading: macro-micro perspectives","authors":"Alice Ezzeddine,&nbsp;Bogdan Cazacliu,&nbsp;Patrick Richard,&nbsp;Luc Thorel,&nbsp;Riccardo Artoni","doi":"10.1007/s10035-024-01467-7","DOIUrl":"10.1007/s10035-024-01467-7","url":null,"abstract":"<p>The discrete element method (DEM) is used to simulate the behavior of a model sand under cyclic stress. Two approaches are employed in the contact model to account for the effect of anisotropic particle shape: (1) spheres with a rolling resistance moment and (2) clumps of spheres. Model parameters are calibrated using experimental results from drained monotonic triaxial tests on NE34 sand. Then, a series of cyclic triaxial tests is done on a homogeneous elementary volume sample with varying density index (<span>(I_D)</span>) and cyclic stress ratio (CSR). Both macroscopic and micromechanical characteristics of the material are examined under cyclic loads. In particular, the evolution of Young’s modulus (<i>E</i>) and the damping ratio (<i>D</i>) with strain amplitude are evaluated at varying <span>(I_D)</span> and compared with values from the literature. An analysis of the coordination number (<i>Z</i>), orientation of strong and weak contact forces, friction mobilization, sliding contacts and fabric evolution links the observed macroscopic behavior of energy dissipation to the phenomenon of frictional sliding at the grain scale.</p>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the micromechanical origin of shear response in granular materials induced by size non-uniformity 探索粒状材料在粒度不均匀性诱导下产生剪切响应的微观机械起源
IF 2.4 3区 工程技术
Granular Matter Pub Date : 2024-10-08 DOI: 10.1007/s10035-024-01472-w
Yang Li, Yang Dong, Haoran Jiang, Zhenming Shi
{"title":"Exploring the micromechanical origin of shear response in granular materials induced by size non-uniformity","authors":"Yang Li,&nbsp;Yang Dong,&nbsp;Haoran Jiang,&nbsp;Zhenming Shi","doi":"10.1007/s10035-024-01472-w","DOIUrl":"10.1007/s10035-024-01472-w","url":null,"abstract":"<p>This study investigates the role of particle size distribution (PSD) in the shear response of granular materials using discrete element modeling (DEM). Three series of DEM samples, two gap-graded and one continuously graded, are prepared under different initial packing densities and sheared quasi-statically to the critical state. The DEM results indicate that the PSD crucially influences the macroscopic stress at the peak state but does not have an impact on it at the critical state. Microscopically, the PSD affects the granular structure and causes significant inhomogeneity in the contact network. The origin of the phenomenological observations can be traced through the stress-force-fabric analysis. At the peak state, it is found that the anisotropy in normal contact force, which is stronger with wider polydispersity, plays the predominant role in determining the overall stress response. When the particles have rearranged sufficiently upon shearing at the critical state, the geometric part of anisotropy starts showing dependence on the PSD and compensates for the mechanical part of anisotropy, thereby leading to an independence of overall stress on size non-uniformity.</p>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of triaxial loading of segregated granular assemblies through experiments and DEM simulations 通过实验和 DEM 模拟研究离析颗粒组合体的三轴加载问题
IF 2.4 3区 工程技术
Granular Matter Pub Date : 2024-10-04 DOI: 10.1007/s10035-024-01470-y
Venkata Rama Manoj Pola, Ratna Kumar Annabattula
{"title":"Study of triaxial loading of segregated granular assemblies through experiments and DEM simulations","authors":"Venkata Rama Manoj Pola,&nbsp;Ratna Kumar Annabattula","doi":"10.1007/s10035-024-01470-y","DOIUrl":"10.1007/s10035-024-01470-y","url":null,"abstract":"<p>A novel position-dependent body force-based confinement for simulating triaxial tests using the Discrete Element Method is presented. The said method is used to perform triaxial simulations on mono-disperse and segregated assemblies of glass spheres. The macroscopic load response obtained in simulations is validated with the experimental load response. A mesh construction algorithm is presented to check whether the confinement applied in the triaxial simulations is accurate. The particle displacement data obtained from triaxial simulations are used to obtain a particle-wise average strain tensor. This is further used to compare the strain localisation between the mono-disperse and segregated assemblies. It is observed that, in the segregated assembly, the interface between the two particle phases acts as a barrier for strain localisation, and the smaller particles preferentially undergo a higher degree of shear strain on average.</p>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic insights into thermal cycling effects in granular materials via X-ray microtomography 通过 X 射线显微层析技术从微观角度了解颗粒材料的热循环效应
IF 2.4 3区 工程技术
Granular Matter Pub Date : 2024-10-01 DOI: 10.1007/s10035-024-01468-6
Yize Pan, Dawa Seo, Mark Rivers, Xiaohui Gong, Giuseppe Buscarnera, Alessandro F. Rotta Loria
{"title":"Microscopic insights into thermal cycling effects in granular materials via X-ray microtomography","authors":"Yize Pan,&nbsp;Dawa Seo,&nbsp;Mark Rivers,&nbsp;Xiaohui Gong,&nbsp;Giuseppe Buscarnera,&nbsp;Alessandro F. Rotta Loria","doi":"10.1007/s10035-024-01468-6","DOIUrl":"10.1007/s10035-024-01468-6","url":null,"abstract":"<div><p>The mechanics of granular materials at the macroscopic scale inherently depends on the particle interactions occurring at the microscopic scale. In recent decades, growing investigations have explored the mechanics of granular materials subjected to thermal cycles, as they involve complex responses that bear significance for science, engineering, and technology. However, the fundamental understanding of the mechanics of granular materials subjected to thermal cycles remains hindered by the absence of empirical evidence into the microscopic particle interactions that govern the macroscopic response of such materials. For the first time, this study presents direct experimental evidence obtained via synchrotron X-ray microtomography to reveal the behavior of the particles that constitute granular materials during thermal cycling. This work experimentally confirms the existing theory by which thermally induced particle interactions drive a macroscopic volumetric expansion and contraction of granular materials upon heating and cooling, respectively, and the development of irreversible volumetric deformations upon the completion of thermal cycles. The results uncover the evolution of particle non-uniform translations, rotations, and contact variations during thermal cycling, which all inherently depend on particle shape.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of particle shape on the void space in granular materials: implications for the properties of granular filters 颗粒形状对颗粒材料空隙的影响:对颗粒过滤器性能的影响
IF 2.4 3区 工程技术
Granular Matter Pub Date : 2024-09-14 DOI: 10.1007/s10035-024-01452-0
Ali Abdallah, Eric Vincens, Hélène Magoariec, Mohsen Ardabilian, Christophe Picault
{"title":"Effect of particle shape on the void space in granular materials: implications for the properties of granular filters","authors":"Ali Abdallah,&nbsp;Eric Vincens,&nbsp;Hélène Magoariec,&nbsp;Mohsen Ardabilian,&nbsp;Christophe Picault","doi":"10.1007/s10035-024-01452-0","DOIUrl":"10.1007/s10035-024-01452-0","url":null,"abstract":"<div><p>This study investigates the influence of particle shape on the void space morphology and topology in granular materials. Numerical samples with spherical and ellipsoidal particle shapes were generated using the discrete element method. A segmentation algorithm was used to extract the pore space characteristics. The results reveal that particle shape significantly affects both constriction and pore sizes, with distinctive features according to flatness index or elongation ratio, the former being more significant than the latter. The obtained results were validated by conducting numerical filtration tests, which illustrated a direct correlation between the constriction properties derived from the pore space extraction and the blockage rate of fine particles in the filtration tests. The study revealed the importance of considering particle shape in filter design, emphasising its significant impact on pore space characteristics and filtration performance.</p><h3>Graphic abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flux atop an advancing slip face and the brink line curvature of barchan dunes 前进滑面顶部的通量和巴恰沙丘的边缘线曲率
IF 2.4 3区 工程技术
Granular Matter Pub Date : 2024-09-13 DOI: 10.1007/s10035-024-01464-w
Jakob Leck
{"title":"Flux atop an advancing slip face and the brink line curvature of barchan dunes","authors":"Jakob Leck","doi":"10.1007/s10035-024-01464-w","DOIUrl":"10.1007/s10035-024-01464-w","url":null,"abstract":"<p>A two-dimensional argument by Bagnold for the flux over the brink line of a shape-invariantly moving dune is generalized to three dimensions. This is achieved by describing the slip face as the solution to an eikonal equation with an unusual Dirichlet boundary condition where part of the boundary is to be determined. With the assumption of potential flow the flux over a heap is obtained based on kinematics, by solving a Poisson equation and without making reference to the wind profile or sand flux laws. Matching it with the brink line flux can be used in the results of field observations by Sauermann et al. (Geomorphology 36:47–62, 2000) to explain one of the five measured shape parameters of a barchan, the brink line curvature, from the other four. More generally the brink line flux formula proposed here could serve as an evolution equation for the brink line position in a given height and flux profile, in the limit that the avalanching processes are much faster than the rest of the surface evolution.</p>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical analysis of multi-scale mechanical theory of microfine magnesite powder molding 微细菱镁矿粉成型的多尺度力学理论数值分析
IF 2.4 3区 工程技术
Granular Matter Pub Date : 2024-09-13 DOI: 10.1007/s10035-024-01466-8
Ruinan Zhang, Zhaoyang Liu, Songyang Pan, Lei Yuan, Tianpeng Wen, Jingkun Yu
{"title":"Numerical analysis of multi-scale mechanical theory of microfine magnesite powder molding","authors":"Ruinan Zhang,&nbsp;Zhaoyang Liu,&nbsp;Songyang Pan,&nbsp;Lei Yuan,&nbsp;Tianpeng Wen,&nbsp;Jingkun Yu","doi":"10.1007/s10035-024-01466-8","DOIUrl":"10.1007/s10035-024-01466-8","url":null,"abstract":"<div><p>This study presents a discrete element numerical model for the unidirectional compaction of microfine magnesite powder, designed to enhance the green body density based on laboratory apparatus configurations. The research demonstrated that as particle size decreased, porosity significantly reduced and density increased, resulting in a more uniform internal distribution within the green body. This led to closer particle contacts and an increased coordination number, which in turn intensified inter-particle interactions and the effectiveness of force transmission. During compaction, the distribution of force chains became more uniform, reducing localized stress concentrations and enhancing the mechanical integrity of the green body. The stress–strain relationship followed a polynomial pattern, highlighting the significant influence of particle size on the mechanical behavior during compaction. These findings provide a valuable theoretical basis for optimizing the compression molding process of microfine magnesite powder, facilitating the production of high-density, high-performance molded products.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible membrane boundary condition DEM-FEM for drained and undrained monotonic and cyclic triaxial tests 用于排水和不排水单调和循环三轴试验的柔性膜边界条件 DEM-FEM
IF 2.4 3区 工程技术
Granular Matter Pub Date : 2024-09-13 DOI: 10.1007/s10035-024-01462-y
Tarek Mohamed, Jérôme Duriez, Guillaume Veylon, Laurent Peyras
{"title":"Flexible membrane boundary condition DEM-FEM for drained and undrained monotonic and cyclic triaxial tests","authors":"Tarek Mohamed,&nbsp;Jérôme Duriez,&nbsp;Guillaume Veylon,&nbsp;Laurent Peyras","doi":"10.1007/s10035-024-01462-y","DOIUrl":"10.1007/s10035-024-01462-y","url":null,"abstract":"<div><p>Accurate simulation of laboratory undrained and cyclic triaxial tests on granular materials using the Discrete Element Method (DEM) is a crucial concern. The evolution of shear bands and non-uniform stress distribution, affected by the membrane boundary condition, can significantly impact the mechanical behavior of samples. In this work, the flexible membrane is simulated by using the Finite Element Method coupled with DEM. In addition, we introduce a hydro-mechanical coupling scheme with a compressible fluid to reproduce the different undrained laboratory tests by using the membrane boundary. The evolution of pore pressure is computed incrementally based on the variation of volumetric strain inside the sample. The results of the membrane boundary condition are compared with more classical DEM simulations such as rigid wall and periodic boundaries. The comparison at different scales reveals many differences, such as the initial anisotropic value for a given preparation procedure, fabric evolution, volumetric strain and the formation of shear bands. Notably, the flexible boundary exhibits more benefits and better aligns with experimental data. As for the undrained condition, the results of the membrane condition are compared with experimental data of Toyoura sand and rigid wall boundary with constant volume. Finally, stress heterogeneity during undrained monotonic and cyclic conditions using the membrane boundary is highlighted.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of freeze–thaw effects on the micropore properties of expansive soil using NMR–SEM techniques 利用核磁共振-扫描电子显微镜技术对冻融效应对膨胀土微孔特性的影响进行实验研究
IF 2.4 3区 工程技术
Granular Matter Pub Date : 2024-09-11 DOI: 10.1007/s10035-024-01465-9
Zhongnian Yang, Zhaochi Lu, Wei Shi, Huan He, Xinyi Nie, Xianzhang Ling, Jin Zhang, Da Guan
{"title":"Experimental investigation of freeze–thaw effects on the micropore properties of expansive soil using NMR–SEM techniques","authors":"Zhongnian Yang,&nbsp;Zhaochi Lu,&nbsp;Wei Shi,&nbsp;Huan He,&nbsp;Xinyi Nie,&nbsp;Xianzhang Ling,&nbsp;Jin Zhang,&nbsp;Da Guan","doi":"10.1007/s10035-024-01465-9","DOIUrl":"10.1007/s10035-024-01465-9","url":null,"abstract":"<div><p>The deformation of expansive soil in seasonally frozen regions caused by freeze–thaw cycles has severely affected the long-term performance of engineering applications. The alteration of expansive soil microstructure has resulted in many geotechnical engineering failures, such as soil cracking and settlement. Consequently, the micropore contraction and expansion mechanisms of expansive soil have drawn extensive attention. Nuclear Magnetic Resonance (NMR) is widely used as a rapid, non-destructive detection technique for moisture monitoring and microstructure evolution characterization in porous media. In addition, Magnetic Resonance Imaging (MRI) can visualize the migration pattern of pore water under different numbers of freeze–thaw cycles. SEM is the most effective and direct method to reveal the structure of particle and micropore arrangement. This paper investigates the pore size evolution and pore structure distribution characteristics of saturated expansive soil via 6 freeze–thaw cycle tests using NMR and SEM techniques. The evolution law of saturated expansive soil under freeze–thaw cycles is obtained. The results show that pore water migrates from the center to the periphery under freeze–thaw cycles. The pore size decreases as the number of freeze–thaw cycles increases and small particles increase significantly. During the freeze–thaw cycle, the arrangement pattern changed from surface-surface contact to stacking.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信