Francois Nicot, Antoine Wautier, Richard Wan, Felix Darve
{"title":"Unifying self-organization and evolution principles in material and biological discrete systems","authors":"Francois Nicot, Antoine Wautier, Richard Wan, Felix Darve","doi":"10.1007/s10035-025-01565-0","DOIUrl":null,"url":null,"abstract":"<div><p>The post-Darwinian era has been marked by a long-term effort to lay the foundations for a generalized theory of evolution in the broad sense. We suggest throughout this article that most of biological systems, including living species, could stand as multiscale complex systems due to microscopic or mesoscopic properties of the entity interacting with its environment. Intriguing commonalties which exist between the living and non-living species as complex systems give a strong hint that a unified approach could be developed. The paper explores this hypothesis by analyzing how complex systems, such as granular matter, evolve and adapt when brought out of equilibrium. The inherent disorder in most of granular materials gives way to a wide spectrum of structural patterns that can transform according to the external conditions applied. When brought out of equilibrium, phase transitions can occur spontaneously, leading to profound configurational reorganizations where new and unexpected structures can emerge. Using most of the fundamentals derived for granular systems, a material approach of evolution is proposed, whereby living and non-living architectures can be brought together within a rational framework whereby key concepts such as self-organization, emergence, scale effects, fluctuations and memory storage are at the very forefront.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01565-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The post-Darwinian era has been marked by a long-term effort to lay the foundations for a generalized theory of evolution in the broad sense. We suggest throughout this article that most of biological systems, including living species, could stand as multiscale complex systems due to microscopic or mesoscopic properties of the entity interacting with its environment. Intriguing commonalties which exist between the living and non-living species as complex systems give a strong hint that a unified approach could be developed. The paper explores this hypothesis by analyzing how complex systems, such as granular matter, evolve and adapt when brought out of equilibrium. The inherent disorder in most of granular materials gives way to a wide spectrum of structural patterns that can transform according to the external conditions applied. When brought out of equilibrium, phase transitions can occur spontaneously, leading to profound configurational reorganizations where new and unexpected structures can emerge. Using most of the fundamentals derived for granular systems, a material approach of evolution is proposed, whereby living and non-living architectures can be brought together within a rational framework whereby key concepts such as self-organization, emergence, scale effects, fluctuations and memory storage are at the very forefront.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.