Unifying self-organization and evolution principles in material and biological discrete systems

IF 2.9 3区 工程技术
Francois Nicot, Antoine Wautier, Richard Wan, Felix Darve
{"title":"Unifying self-organization and evolution principles in material and biological discrete systems","authors":"Francois Nicot,&nbsp;Antoine Wautier,&nbsp;Richard Wan,&nbsp;Felix Darve","doi":"10.1007/s10035-025-01565-0","DOIUrl":null,"url":null,"abstract":"<div><p>The post-Darwinian era has been marked by a long-term effort to lay the foundations for a generalized theory of evolution in the broad sense. We suggest throughout this article that most of biological systems, including living species, could stand as multiscale complex systems due to microscopic or mesoscopic properties of the entity interacting with its environment. Intriguing commonalties which exist between the living and non-living species as complex systems give a strong hint that a unified approach could be developed. The paper explores this hypothesis by analyzing how complex systems, such as granular matter, evolve and adapt when brought out of equilibrium. The inherent disorder in most of granular materials gives way to a wide spectrum of structural patterns that can transform according to the external conditions applied. When brought out of equilibrium, phase transitions can occur spontaneously, leading to profound configurational reorganizations where new and unexpected structures can emerge. Using most of the fundamentals derived for granular systems, a material approach of evolution is proposed, whereby living and non-living architectures can be brought together within a rational framework whereby key concepts such as self-organization, emergence, scale effects, fluctuations and memory storage are at the very forefront.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01565-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The post-Darwinian era has been marked by a long-term effort to lay the foundations for a generalized theory of evolution in the broad sense. We suggest throughout this article that most of biological systems, including living species, could stand as multiscale complex systems due to microscopic or mesoscopic properties of the entity interacting with its environment. Intriguing commonalties which exist between the living and non-living species as complex systems give a strong hint that a unified approach could be developed. The paper explores this hypothesis by analyzing how complex systems, such as granular matter, evolve and adapt when brought out of equilibrium. The inherent disorder in most of granular materials gives way to a wide spectrum of structural patterns that can transform according to the external conditions applied. When brought out of equilibrium, phase transitions can occur spontaneously, leading to profound configurational reorganizations where new and unexpected structures can emerge. Using most of the fundamentals derived for granular systems, a material approach of evolution is proposed, whereby living and non-living architectures can be brought together within a rational framework whereby key concepts such as self-organization, emergence, scale effects, fluctuations and memory storage are at the very forefront.

统一物质和生物离散系统中的自组织和进化原理
后达尔文时代的标志是为广义的广义进化论奠定基础的长期努力。在本文中,我们认为大多数生物系统,包括现存物种,由于其与环境相互作用的微观或介观特性,可以作为多尺度复杂系统存在。作为复杂系统存在于生物和非生物物种之间的有趣的共性给了一个强烈的暗示,即可以开发一种统一的方法。本文通过分析复杂系统(如颗粒物质)在脱离平衡状态时如何进化和适应来探索这一假设。在大多数颗粒状材料中,固有的无序让位给广泛的结构模式,这些结构模式可以根据施加的外部条件进行转换。当脱离平衡状态时,相变可以自发发生,导致深刻的构型重组,从而出现新的和意想不到的结构。利用颗粒系统的基本原理,提出了一种物质进化的方法,在一个合理的框架内,生命和非生命的建筑可以聚集在一起,其中自组织、涌现、规模效应、波动和记忆存储等关键概念处于最前沿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信