A high-speed rail tapered bearing temperature calculation model considering contamination particles

IF 2.9 3区 工程技术
Zhou Chang, Chang Yu, Zhengbin Zhao, Qian Jia
{"title":"A high-speed rail tapered bearing temperature calculation model considering contamination particles","authors":"Zhou Chang,&nbsp;Chang Yu,&nbsp;Zhengbin Zhao,&nbsp;Qian Jia","doi":"10.1007/s10035-025-01543-6","DOIUrl":null,"url":null,"abstract":"<div><p>Measuring a temperature rise in tapered bearings is very important. This paper proposes a model for calculating the rise in temperature of bearings that considers the presence of contaminants in the lubrication. This study develops a discrete lubrication model for the Hertzian contact zone of a bearing using the Lattice Boltzmann method (LBM). The model analyzes the effect of particles on grease film flow and pressure. The temperature rise of the bearing was then calculated. Meanwhile, the study solved the bearing temperature rise in the lubricating grease using the finite difference method (FDM). The results of the LBM calculations were compared with those of the FDM calculations. Finally, an experimental study is conducted to investigate the temperature increase of the raceway in the presence of particulate matter in sealed grease lubrication. The results of the study show that the presence of particulate matter has little effect on the temperature rise of the bearings. The study results show that burnout is caused by a lack of grease rather than particles.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01543-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring a temperature rise in tapered bearings is very important. This paper proposes a model for calculating the rise in temperature of bearings that considers the presence of contaminants in the lubrication. This study develops a discrete lubrication model for the Hertzian contact zone of a bearing using the Lattice Boltzmann method (LBM). The model analyzes the effect of particles on grease film flow and pressure. The temperature rise of the bearing was then calculated. Meanwhile, the study solved the bearing temperature rise in the lubricating grease using the finite difference method (FDM). The results of the LBM calculations were compared with those of the FDM calculations. Finally, an experimental study is conducted to investigate the temperature increase of the raceway in the presence of particulate matter in sealed grease lubrication. The results of the study show that the presence of particulate matter has little effect on the temperature rise of the bearings. The study results show that burnout is caused by a lack of grease rather than particles.

Graphical Abstract

考虑污染颗粒的高铁圆锥轴承温度计算模型
测量圆锥轴承的温升是非常重要的。本文提出了一种计算轴承温度上升的模型,该模型考虑了润滑中存在的污染物。本文采用格子玻尔兹曼方法(LBM)建立了轴承赫兹接触区离散润滑模型。该模型分析了颗粒对油膜流动和压力的影响。然后计算轴承的温升。同时,采用有限差分法(FDM)解决了润滑脂中轴承温升问题。将LBM计算结果与FDM计算结果进行了比较。最后,通过实验研究了密封油脂润滑中存在颗粒物时滚道的温升情况。研究结果表明,颗粒物质的存在对轴承的温升影响很小。研究结果表明,燃尽是由于缺乏油脂而不是颗粒造成的。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信