Levent Aydin, Ayfer Peker Karatoprak, Serdar Kucuk
{"title":"Biologic: H-Bot Kinematics Based Multi-Micro-Extrusion Bioprinter","authors":"Levent Aydin, Ayfer Peker Karatoprak, Serdar Kucuk","doi":"10.1115/1.4056375","DOIUrl":"https://doi.org/10.1115/1.4056375","url":null,"abstract":"Abstract Three-dimensional bioprinting offers a novel strategy to create large-scale complex tissue models. Nowadays, layer by layer fabrication is used to create patient specific tissue substitutes. However, commercially available bioprinters cannot be widely used especially in small research facilities due to their high cost, and may not be suitable for bioprinting of complex tissue models. Besides, most of the systems are not capable of providing the required working conditions. The aim of this study is to design and assemble of a low-cost H-Bot based bioprinter that allows multimicro-extrusion to form complex tissue models in a closed cabin and sterile conditions. In this study, a micro-extrusion based bioprinter, Bio-Logic, with three different print heads, namely, Universal Micro-Extrusion Module (UMM), Multi-Micro-Extrusion Module (MMM), and Ergonomic Multi-Extrusion Module (EMM) were developed. The print heads were tested and scaffold models were bioprinted and analyzed. Bio-Logic was compared in price with the commercially available bioprinters. Scaffold fabrication was successfully performed with Bio-Logic. The average pore size of the scaffold was determined as 0.37±0.04 mm (n = 20). Total cost of Bio-Logic was considerably less than any other commercially available bioprinters. A new system is developed for bioprinting of complex tissue models. The cost of the system is appropriate for research and features of the device may be upgraded according to the needs. Bio-Logic is the first H-Bot kinematics based bioprinter and has ability to measure atmospheric conditions in a closed cabin.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":"310 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136178986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristin N. Hageman, E. Peterson, P. Stypulkowski, Rob Corey, R. Jensen, T. Billstrom, T. Netoff, S. Stanslaski
{"title":"A Translatable System For Bi-directional Stimulation And Evoked Response Measurement To Enable Neuronal Network Exploration","authors":"Kristin N. Hageman, E. Peterson, P. Stypulkowski, Rob Corey, R. Jensen, T. Billstrom, T. Netoff, S. Stanslaski","doi":"10.1115/1.4056945","DOIUrl":"https://doi.org/10.1115/1.4056945","url":null,"abstract":"\u0000 Neural stimulation therapies and neural sensing continues to evolve as new technologies are introduced into clinical practice. A major confound in these types of neural recordings is the contamination of the signal of interest with electrical stimulus artifact, which can obscure short latency evoked activity and corrupt spectral analysis of longer duration signals. Approach. Here we describe the design and early pre-clinical evaluation of a neurostimulator with improved capabilities for both sensing and stimulation, with particular emphasis on managing stimulus artifact. The system was tested in three ovine deep brain stimulation (DBS) subjects, one with a DBS lead targeting the hippocampus, and two with DBS leads targeting the subthalamic nucleus (STN). All leads were externalized with percutaneous lead extensions. Results demonstrate that it was possible to record evoked potentials with a latency of 1–2 ms following stimulation in all subjects with the new system. Recordings from the hippocampal target showed clear short-latency responses exhibiting behavior consistent with evoked compound action potentials (ECAPs). In contrast, recordings from the STN target demonstrated highly resonant activity, dependent upon stimulus frequency, which could persist for 20–30 ms following individual stimuli. Both directional stimulation and directional recordings were evaluated to determine their influence on this evoked resonant neural activity (ERNA). The system was also characterized for sensing in one spinal cord stimulation (SCS) ovine subject and one sacral nerve modulation (SNM) ovine subject.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41919152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gravity Augmented Fused Filament Fabrication Additive Manufacturing","authors":"J. Huss, A. Erdman","doi":"10.1115/1.4056909","DOIUrl":"https://doi.org/10.1115/1.4056909","url":null,"abstract":"\u0000 This article introduces the design, methods, and use cases of a novel Gravity Augmented Additive Manufacturing (GAAM) approach to Fused Filament Fabrication (FFF) using a novel seven degree of freedom (DoF) delta robotic system. Capable of rotating parts and approaching the workpiece with the deposition head from user-specified or algorithm-determined angles, this system allows users the design freedom to create objects using less support material, while improving the performance of 3D printed components. Not only is time saved by reducing (or eliminating) support material, but components may be able to resist higher loading. Additionally, this system and the methods of operation described below allow users to create objects that are otherwise impossible or impractical to construct using traditional three axis FFF 3D printing, while maintaining compatibility with existing G-code preparation techniques. Finally, this more flexible 3D printing system has advanced applications in generating patient specific objects, which may benefit from more highly specialized toolpaths and design freedom afforded by this system.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43599761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Design and Experiment of Cable-Driven Puncturing Surgery Robot for Soft Needle","authors":"Jihua Li, Qi Jiang","doi":"10.1115/1.4056865","DOIUrl":"https://doi.org/10.1115/1.4056865","url":null,"abstract":"\u0000 In this paper, a cable-driven puncturing surgery robot named CPSR is proposed for soft needle. The cable-driven mechanism has lower mass, smaller dimension and smooth transmission. The motor driving the rotational joints is separated using cable which strengthen the dynamic performance of the robot. A decoupling mechanism based on movable pulley is also proposed to reduce the transmission error. Transmission error of cable-driven mechanism are also analysed to improve the control accuracy. The simulation of transmission error is completed to optimize the design parameters of cable-driven mechanism. In puncturing experiments, the feasibility of the CPSR driving the soft needle using cable-based mechanism is validated. Also the insertion error less than 0.7 mm and repeatability less than 2.5 mm are achieved. Finally the reasons limiting the accuracy and corresponding solutions are discussed. In the future research, the shape sensor will be fabricated using optic fiber and mounted on the slim needle which is helpful to complete automated operations.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41596744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a Novel Perturbation Platform System for Balance Response Testing and Rehabilitation Interventions","authors":"Corey Pew, Soroosh Sadeh, H. Hsiao, R. Neptune","doi":"10.1115/1.4056831","DOIUrl":"https://doi.org/10.1115/1.4056831","url":null,"abstract":"\u0000 Balance perturbations are often used to gain insight into reactive control strategies used to prevent falls. We developed a Perturbation Platform System (PPS) that can induce perturbations in both vertical and angled directions. The PPS was evaluated using human subject testing to verify its function and performance. The final system consisted of two box platforms that can individually perform vertical and angled surface perturbations. Following a perturbation, the system can automatically reset for the next iteration under the weight of the standing participant. The PPS achieves a peak downward acceleration of 4.4 m/s2 during drop events that simulate sudden surface changes. The experimental testing revealed that the perturbation induced a peak limb loading of 280 ± 38 % of body weight (BW) during vertical drops and that participants' center of mass displacements were consistent with previous balance studies evaluating vertical perturbations. The system can be used in a laboratory or clinical setting to better understand balance response and control mechanisms and assist in rehabilitation training to improve balance control and help mitigate the incidence of falls.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49331652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel Bilayer Elasto-Hydrogel Adhesive Film for Facilitating Wet-Occlusive Therapy for Atopic Dermatitis","authors":"Joshua Pillai, Jonathan Pillai","doi":"10.1115/1.4056833","DOIUrl":"https://doi.org/10.1115/1.4056833","url":null,"abstract":"\u0000 Atopic dermatitis (AD) is a common chronic multifactorial skin disease that causes skin inflammation owing to defects in the skin barrier, immune dysregulation, or infectious agents. The most common treatment of AD utilizes wet-occlusion therapies to create a protective skin barrier by providing moisture to the epidermis. However, these treatments are suboptimal in managing disease symptoms owing to their limited ability to retain or restore skin hydration and inefficient drug delivery. Currently, there are no effective approaches for treating AD that are specifically designed to improve drug delivery efficacy and skin hydration. This study aims to introduce a new approach of localized drug delivery and facilitate more efficient dermal hydration using hydrogels and elastomers. Herein, we report a simple yet effective bilayer elasto-hydrogel adhesive film (BEHAF) dressing made from an interpenetrating alginate and polyacrylamide (alginate/AAm) hydrogel layer backed by a thin film of polydimethylsiloxane elastomer. In an in vitro hydration study, it was found that the BEHAF dressing enabled efficient retention and delivery of hydration to porcine skin and model epidermis for more than 48 h and showed potential for drug delivery of both hydrophobic and hydrophilic drugs. Furthermore, mechanical testing results indicate that the BEHAF mimics the elastic behavior of human skin and shows good adhesion sensitivity, thereby suggesting biomechanical compatibility and suitability for long-term usage. Overall, the BEHAF dressing may provide a viable vehicle for dermal hydration and drug delivery, thereby improving the efficacy of wet-occlusive therapy for treating AD.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43870432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Hrabe, I. Gribovskaja-Rupp, K. Guyton, Muneera R. Kapadia, J. Cromwell
{"title":"Development of a Noninvasive Device to Predict Postoperative Ileus Using Acoustic Biomarkers","authors":"J. Hrabe, I. Gribovskaja-Rupp, K. Guyton, Muneera R. Kapadia, J. Cromwell","doi":"10.1115/1.4056832","DOIUrl":"https://doi.org/10.1115/1.4056832","url":null,"abstract":"\u0000 Purpose: For patients undergoing gastrointestinal surgery, postoperative ileus (POI) is difficult to predict and occurs at rates up to 30%. We hypothesized that discrete gastrointestinal acoustic biomarkers correlating to POI development may present in early postoperative hours. To test this hypothesis, we conducted a two-phase investigation to record and analyze intestinal sounds, then prospectively test the feasibility of predicting POI using a noninvasive device trained with an algorithm developed from Phase 1 results.\u0000 Methods: In Phase 1, a library of intestinal sounds from normal volunteer subjects and patients undergoing intestinal resection were recorded. An acoustic biomarker most correlated with POI was identified and used to develop a predictive algorithm. In Phase 2, an autonomous, wearable device possessing listening and signal processing capability was developed and prospectively tested for prediction of POI in patients undergoing bowel resection.\u0000 Results: In Phase 1, 30 patients undergoing resection were studied, 9 of whom developed POI, from which an acoustic biomarker was identified and analyzed. In Phase 2, prospective prediction of POI in 75 enrolled subjects undergoing bowel resection was assessed. POI was correctly predicted in 12 of 14 subjects who developed POI; prediction that POI would not occur was correct in 39 of 51 subjects. Sensitivity and specificity were 85.7% and 63.9%, respectively. Negative predictive value and accuracy were 95.1%, and 68%, respectively.\u0000 Conclusions: Our study demonstrates feasibility of POI prediction based on gastrointestinal sounds using a noninvasive device. This device may help risk stratify patients likely to develop POI.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47529162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative Efficacy of Humidifiers for Noninvasive Infant Respiratory Support","authors":"S. John, Casey Hokanson, T. Slusher, A. Bjorklund","doi":"10.1115/1.4056760","DOIUrl":"https://doi.org/10.1115/1.4056760","url":null,"abstract":"\u0000 Background: Delivery of cold, dry air to infants while supporting their breathing can irritate and damage their sensitive nares. In high resource settings, electric heated humidifiers are used to mitigate this problem. In many resource-constrained settings, passive non-electric bubbling humidifiers are instead used. We here compare the efficacy of conventional electric heated humidification, custom-built low cost heated humidification, passive non-electric bubbling humidification and a control (no humidification). Methods: In a hospital patient room (Temperature 22C, humidity 50%), the temperature and humidity delivered to a simulated patient lung via a BC161-10 Fisher Paykel bubble CPAP system were measured with conventional electric heated humidification, low cost custom-built heated humidification, passive bubbling humidification and no humidification. (Delivered CPAP: 5 cm H2O; flow rate varied from 4 to 8 LPM in 2 LPM increments.) Results: As flow rate was varied from 4 - 8 LPM, delivered relative humidity (standard deviation) with each humidifier was as follows: control 10% (3.6%), passive bubbler 44% (3.7%), custom-built humidifier 67% (1.7%), electric heated humidifier 91% (0.86%). Delivered temperature with the electric heated humidifier was 38C (0.21C) vs. 33C for all other setups. Conclusions: Conventional electric heating humidification is more effective than passive bubbling humidification, and the custom-built low cost humidifier provides an intermediate degree of humidification. Through further improvement of this concept with a heated inspiratory circuit and sensor based control of the heating element, an effective yet low cost solution heating humidification could be developed.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43870811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a Customized Mask Frame Using a 3D Facial Scan for an Airtight Seal for Disposable Surgical Face Masks","authors":"J. Park, M. Mehrubeoglu","doi":"10.1115/1.4056506","DOIUrl":"https://doi.org/10.1115/1.4056506","url":null,"abstract":"\u0000 The present study focuses on the design and development of a custom frame, using an individual's 3D custom facial scan, to improve the seal of the existing surgical masks. Three participants' facial scans with a wide range of facial dimensions were collected using a 3D hand-held scanner. During design, the contact area between the custom mask frame and the wearer's skin was determined based on an individual's 3D facial shape. To evaluate the effectiveness of the airtight seal, a qualitative fit (smell/taste) test kit and thermal image camera were utilized. When the participants wore the surgical masks without the customized mask frames to securely fit the surgical masks, the participants smelled the saccharine scent from the test kit. However, while wearing the surgical masks fitted with the custom mask frame that held the mask in place, none of the participants could smell the scent. In addition, thermal images showed ambient temperature changes in a surgical mask suggesting air leakage around the boundary of the mask, while the subject was inhaling and exhaling. The thermal images confirmed the effectiveness of the custom frame to block the inflow/outflow of air potentially carrying the virus. The developed custom mask frame will be particularly beneficial for frontline medical staff members who treat patients with infectious viruses transmitted through aerosols as part of their PPE.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45595318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Validation of a Steerable Port Delivery Cannula System for Laser Interstitial Thermal Therapy","authors":"N. Agwu, E. Leuthardt, J. Gorlewicz","doi":"10.1115/1.4056504","DOIUrl":"https://doi.org/10.1115/1.4056504","url":null,"abstract":"\u0000 MRI (Magnetic Resonance Imaging) guided laser interstitial thermal therapy (LITT) is a procedure used for treating glioblastomas and epilepsy lesions in the brain. Current methods for placing LITT ablation probes use straight trajectories. This limits the treatment area, necessitating multiple passes of straight trajectories or risking untreated tumor margins. This work presents a port delivery cannula system (PDCS) to be integrated within existing surgical workflows of LITT, providing off-axis navigation to areas otherwise deemed inaccessible. The design of the PDCS is centered around a two-tube, Nitinol active cannula system, which delivers, places, and retracts a flexible, thermoplastic port along curved trajectories. We present the design of the PDCS system and validate it in free-space, phantom models, and ovine brain trials, with a specific focus on evaluating key parameters of port material characteristics. Eight commercial, biocompatible ports and five custom ports created using additive manufacturing were investigated. Results illustrate that ideal port characteristics include durometers between 85A-95A, a low coefficient of friction, and a wall thickness of approximately 20% of the overall port diameter. Our results also demonstrate that the PDCS system can achieve accuracies under 1mm in phantom models and 2mm in ovine tissue.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47782414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}