{"title":"三维生物打印过程中可互换多材料喷嘴系统的设计","authors":"Cartwright Nelson, Slesha Tuladhar, MD Habib","doi":"10.1115/1.4055249","DOIUrl":null,"url":null,"abstract":"Abstract Three-dimensional bioprinting is a rapidly growing field attempting to recreate functional tissues for medical and pharmaceutical purposes. Development of functional tissue requires deposition of multiple biomaterials encapsulating multiple cell types, i.e., bio-ink necessitating switching ability between bio-inks. Existing systems use more than one print head to achieve this complex interchangeable deposition, decreasing efficiency, structural integrity, and accuracy. Therefore, the objective of this paper is to develop an alternative deposition system that will not require more than one print head for multimaterial bioprinting. To achieve that objective, we developed a nozzle system capable of switching between multiple bio-inks with continuous deposition, ensuring the minimum transition distance so that precise deposition transitioning can be achieved. This research progressed from a prototyping stage of nozzle system to the final selection of the system. Finally, the effect of rheological properties of different biomaterial compositions on the transition distance is investigated by fabricating the sample scaffolds.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing an Interchangeable Multi-Material Nozzle System for the Three-Dimensional Bioprinting Process\",\"authors\":\"Cartwright Nelson, Slesha Tuladhar, MD Habib\",\"doi\":\"10.1115/1.4055249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Three-dimensional bioprinting is a rapidly growing field attempting to recreate functional tissues for medical and pharmaceutical purposes. Development of functional tissue requires deposition of multiple biomaterials encapsulating multiple cell types, i.e., bio-ink necessitating switching ability between bio-inks. Existing systems use more than one print head to achieve this complex interchangeable deposition, decreasing efficiency, structural integrity, and accuracy. Therefore, the objective of this paper is to develop an alternative deposition system that will not require more than one print head for multimaterial bioprinting. To achieve that objective, we developed a nozzle system capable of switching between multiple bio-inks with continuous deposition, ensuring the minimum transition distance so that precise deposition transitioning can be achieved. This research progressed from a prototyping stage of nozzle system to the final selection of the system. Finally, the effect of rheological properties of different biomaterial compositions on the transition distance is investigated by fabricating the sample scaffolds.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055249\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4055249","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Designing an Interchangeable Multi-Material Nozzle System for the Three-Dimensional Bioprinting Process
Abstract Three-dimensional bioprinting is a rapidly growing field attempting to recreate functional tissues for medical and pharmaceutical purposes. Development of functional tissue requires deposition of multiple biomaterials encapsulating multiple cell types, i.e., bio-ink necessitating switching ability between bio-inks. Existing systems use more than one print head to achieve this complex interchangeable deposition, decreasing efficiency, structural integrity, and accuracy. Therefore, the objective of this paper is to develop an alternative deposition system that will not require more than one print head for multimaterial bioprinting. To achieve that objective, we developed a nozzle system capable of switching between multiple bio-inks with continuous deposition, ensuring the minimum transition distance so that precise deposition transitioning can be achieved. This research progressed from a prototyping stage of nozzle system to the final selection of the system. Finally, the effect of rheological properties of different biomaterial compositions on the transition distance is investigated by fabricating the sample scaffolds.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.