一种用于平衡反应测试和康复干预的新型扰动平台系统的开发

IF 0.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Corey Pew, Soroosh Sadeh, H. Hsiao, R. Neptune
{"title":"一种用于平衡反应测试和康复干预的新型扰动平台系统的开发","authors":"Corey Pew, Soroosh Sadeh, H. Hsiao, R. Neptune","doi":"10.1115/1.4056831","DOIUrl":null,"url":null,"abstract":"\n Balance perturbations are often used to gain insight into reactive control strategies used to prevent falls. We developed a Perturbation Platform System (PPS) that can induce perturbations in both vertical and angled directions. The PPS was evaluated using human subject testing to verify its function and performance. The final system consisted of two box platforms that can individually perform vertical and angled surface perturbations. Following a perturbation, the system can automatically reset for the next iteration under the weight of the standing participant. The PPS achieves a peak downward acceleration of 4.4 m/s2 during drop events that simulate sudden surface changes. The experimental testing revealed that the perturbation induced a peak limb loading of 280 ± 38 % of body weight (BW) during vertical drops and that participants' center of mass displacements were consistent with previous balance studies evaluating vertical perturbations. The system can be used in a laboratory or clinical setting to better understand balance response and control mechanisms and assist in rehabilitation training to improve balance control and help mitigate the incidence of falls.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Novel Perturbation Platform System for Balance Response Testing and Rehabilitation Interventions\",\"authors\":\"Corey Pew, Soroosh Sadeh, H. Hsiao, R. Neptune\",\"doi\":\"10.1115/1.4056831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Balance perturbations are often used to gain insight into reactive control strategies used to prevent falls. We developed a Perturbation Platform System (PPS) that can induce perturbations in both vertical and angled directions. The PPS was evaluated using human subject testing to verify its function and performance. The final system consisted of two box platforms that can individually perform vertical and angled surface perturbations. Following a perturbation, the system can automatically reset for the next iteration under the weight of the standing participant. The PPS achieves a peak downward acceleration of 4.4 m/s2 during drop events that simulate sudden surface changes. The experimental testing revealed that the perturbation induced a peak limb loading of 280 ± 38 % of body weight (BW) during vertical drops and that participants' center of mass displacements were consistent with previous balance studies evaluating vertical perturbations. The system can be used in a laboratory or clinical setting to better understand balance response and control mechanisms and assist in rehabilitation training to improve balance control and help mitigate the incidence of falls.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056831\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056831","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

平衡扰动通常用于深入了解用于防止跌倒的反应控制策略。我们开发了一个扰动平台系统(PPS),该系统可以在垂直和倾斜方向上引起扰动。PPS通过人体受试者测试进行评估,以验证其功能和性能。最后的系统由两个箱式平台组成,可以单独进行垂直和倾斜表面扰动。在扰动之后,系统可以在站立参与者的重量下自动重置以进行下一次迭代。PPS在模拟突然表面变化的跌落事件中实现了4.4 m/s2的峰值向下加速度。实验测试表明,在垂直降落过程中,扰动引起了280±38%体重(BW)的峰值肢体负荷,参与者的质心位移与之前评估垂直扰动的平衡研究一致。该系统可在实验室或临床环境中使用,以更好地了解平衡反应和控制机制,并协助康复训练,以改善平衡控制,帮助降低跌倒的发生率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Novel Perturbation Platform System for Balance Response Testing and Rehabilitation Interventions
Balance perturbations are often used to gain insight into reactive control strategies used to prevent falls. We developed a Perturbation Platform System (PPS) that can induce perturbations in both vertical and angled directions. The PPS was evaluated using human subject testing to verify its function and performance. The final system consisted of two box platforms that can individually perform vertical and angled surface perturbations. Following a perturbation, the system can automatically reset for the next iteration under the weight of the standing participant. The PPS achieves a peak downward acceleration of 4.4 m/s2 during drop events that simulate sudden surface changes. The experimental testing revealed that the perturbation induced a peak limb loading of 280 ± 38 % of body weight (BW) during vertical drops and that participants' center of mass displacements were consistent with previous balance studies evaluating vertical perturbations. The system can be used in a laboratory or clinical setting to better understand balance response and control mechanisms and assist in rehabilitation training to improve balance control and help mitigate the incidence of falls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信