Progress in Molecular Biology and Translational Science最新文献

筛选
英文 中文
Current approaches in identification of a novel drug targets for drug repurposing. 确定新药靶点以实现药物再利用的现有方法。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2024-01-01 Epub Date: 2024-04-04 DOI: 10.1016/bs.pmbts.2024.03.020
Khushal Khambhati, Vijai Singh
{"title":"Current approaches in identification of a novel drug targets for drug repurposing.","authors":"Khushal Khambhati, Vijai Singh","doi":"10.1016/bs.pmbts.2024.03.020","DOIUrl":"10.1016/bs.pmbts.2024.03.020","url":null,"abstract":"<p><p>Currently, millions of drugs and their licence have been expired or will be expiring in near future. Therefore, existing USFDA approved drug can be used for treating another disease. The above-mentioned approach falls under the category of drug repurposing. Drug repurposing is an alternative strategy for finding new applications of existing USFDA approved drugs. Identification of a novel drug target is one of the go to way for drug repurposing so that new therapeutic applications of USFDA approved drugs could be determined. Recent advances in computational biology and bioinformatics can help to accelerate the same. Drug repurposing can save time and resource as compared to discovery of an entirely new drug molecule. In this chapter, we explore different strategies for discovery of a novel drug target and its uses for drug repurposing to treat disease.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"205 ","pages":"213-220"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA therapeutics for metabolic disorders. 治疗代谢紊乱的 RNA 疗法。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2024-01-01 Epub Date: 2024-01-25 DOI: 10.1016/bs.pmbts.2023.12.014
Thuy-Duong Vu, Sheng-Che Lin, Chia-Ching Wu, Dinh-Toi Chu
{"title":"RNA therapeutics for metabolic disorders.","authors":"Thuy-Duong Vu, Sheng-Che Lin, Chia-Ching Wu, Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.12.014","DOIUrl":"10.1016/bs.pmbts.2023.12.014","url":null,"abstract":"<p><p>The prevalence of metabolic disorders is increasing exponentially and has recently reached epidemic levels. Over the decades, a large number of therapeutic options have been proposed to manage these diseases but still show several limitations. In this circumstance, RNA therapeutics have rapidly emerged as a new hope for patients with metabolic diseases. 57 years have elapsed from the discovery of mRNA, a large number of RNA-based drug candidates have been evaluated for their therapeutic effectiveness and clinical safety under clinical studies. To date, there are seven RNA drugs for treating metabolic disorders receiving official approval and entering the global market. Their targets include hereditary transthyretin-mediated amyloidosis (hATTR), familial chylomicronemia syndrome, acute hepatic porphyria, primary hyperoxaluria type 1 and hypercholesterolemia, which are all related to liver proteins. All of these seven RNA drugs are antisense oligonucleotides (ASO) and small interfering RNA (siRNA). These two types of treatment are both based on oligonucleotides complementary to target RNA through Watson-Crick base-pairing, but their mechanisms of action include different nucleases. Such treatments show greatest potential among all types of RNA therapeutics due to consecutive achievements in chemical modifications. Another method, mRNA therapeutics also promise a brighter future for patients with a handful of drug candidates currently under development.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"203 ","pages":"181-196"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advantages and disadvantages of RNA therapeutics. RNA 疗法的优缺点。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2024-01-01 Epub Date: 2024-01-25 DOI: 10.1016/bs.pmbts.2023.12.016
Binh Le Huy, Hai Bui Thi Phuong, Huy Luong Xuan
{"title":"Advantages and disadvantages of RNA therapeutics.","authors":"Binh Le Huy, Hai Bui Thi Phuong, Huy Luong Xuan","doi":"10.1016/bs.pmbts.2023.12.016","DOIUrl":"10.1016/bs.pmbts.2023.12.016","url":null,"abstract":"<p><p>RNA therapeutics is an innovative and rapidly evolving field at the forefront of medical research and biotechnology. Recently, many studies have shown that diverse RNA types play important roles in cells. Besides the protein translation coding, they also express and regulate a variety of cellular pathways. Indeed, along with the research and studies, many drugs and vaccines were developed from RNAs, including both coding and non-coding RNA. Some cases were approved to be medicines or under clinical trial. After years of use and application, they have shown a bright opportunity to prevent and treat many fatal and rare diseases with many strong points, such as fast production and long-term effects. Besides, they still have some drawbacks that need to be overcome, like stability or delivery to become the new generation of medicine. Therefore, this chapter focuses on providing an overview of the advantages and disadvantages of RNA therapeutics as well as some crucial points for future development.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"203 ","pages":"151-164"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA therapeutics for treatment of diabetes. 治疗糖尿病的 RNA 疗法。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2024-01-01 Epub Date: 2024-01-25 DOI: 10.1016/bs.pmbts.2023.12.013
Yen Vy Nguyen Thi, Thuy Tien Ho, Safak Caglayan, Thamil Selvee Ramasamy, Dinh-Toi Chu
{"title":"RNA therapeutics for treatment of diabetes.","authors":"Yen Vy Nguyen Thi, Thuy Tien Ho, Safak Caglayan, Thamil Selvee Ramasamy, Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.12.013","DOIUrl":"10.1016/bs.pmbts.2023.12.013","url":null,"abstract":"<p><p>Diabetes is an ongoing global problem as it affects health of more than 537 million people around the world. Diabetes leaves many serious complications that affect patients and can cause death if not detected and treated promptly. Some of the complications of diabetes include impaired vascular system, increased risk of stroke, neurological diseases that cause pain and numbness, diseases related to the retina leading to blindness, and other complications affecting kidneys, heart failure, muscle weakness, muscle atrophy. All complications of diabetes seriously affect the health of patients. Recently, gene therapy has emerged as a viable treatment strategy for various diseases. DNA and RNA are among the target molecules that can change the structure and function of proteins and are effective methods of treating diseases, especially genetically inherited diseases. RNA therapeutics has attracted deep interest as it has been approved for application in the treatment of functional system disorders such as spinal muscular atrophy, and muscular dystrophy. In this review, we cover the types of RNA therapies considered for treatment of diabetes. In particular, we delve into the mechanism of action of RNA therapies for diabetes, and studies involving testing of these RNA therapies. Finally, we have highlighted the limitations of the current understanding in the mechanism of action of RNA therapies.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"203 ","pages":"287-300"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reimagining old drugs with new tricks: Mechanisms, strategies and notable success stories in drug repurposing for neurological diseases. 老药新用:神经系统疾病药物再利用的机制、策略和显著的成功案例。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2024-01-01 Epub Date: 2024-04-03 DOI: 10.1016/bs.pmbts.2024.03.029
Neetu Rani, Aastha Kaushik, Shefali Kardam, Sonika Kag, V Samuel Raj, Rashmi K Ambasta, Pravir Kumar
{"title":"Reimagining old drugs with new tricks: Mechanisms, strategies and notable success stories in drug repurposing for neurological diseases.","authors":"Neetu Rani, Aastha Kaushik, Shefali Kardam, Sonika Kag, V Samuel Raj, Rashmi K Ambasta, Pravir Kumar","doi":"10.1016/bs.pmbts.2024.03.029","DOIUrl":"10.1016/bs.pmbts.2024.03.029","url":null,"abstract":"<p><p>Recent evolution in drug repurposing has brought new anticipation, especially in the conflict against neurodegenerative diseases (NDDs). The traditional approach to developing novel drugs for these complex disorders is laborious, time-consuming, and often abortive. However, drug reprofiling which is the implementation of illuminating novel therapeutic applications of existing approved drugs, has shown potential as a promising strategy to accelerate the hunt for therapeutics. The advancement of computational approaches and artificial intelligence has expedited drug repurposing. These progressive technologies have enabled scientists to analyse extensive datasets and predict potential drug-disease interactions. By prospecting into the existing pharmacological knowledge, scientists can recognise potential therapeutic candidates for reprofiling, saving precious time and resources. Preclinical models have also played a pivotal role in this field, confirming the effectiveness and mechanisms of action of repurposed drugs. Several studies have occurred in recent years, including the discovery of available drugs that demonstrate significant protective effects in NDDs, relieve debilitating symptoms, or slow down the progression of the disease. These findings highlight the potential of repurposed drugs to change the landscape of NDD treatment. Here, we present an overview of recent developments and major advances in drug repurposing intending to provide an in-depth analysis of traditional drug discovery and the strategies, approaches and technologies that have contributed to drug repositioning. In addition, this chapter attempts to highlight successful case studies of drug repositioning in various therapeutic areas related to NDDs and explore the clinical trials, challenges and limitations faced by researchers in the field. Finally, the importance of drug repositioning in drug discovery and development and its potential to address discontented medical needs is also highlighted.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"205 ","pages":"23-70"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA therapeutics in cancer treatment. 治疗癌症的 RNA 疗法。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2024-01-01 Epub Date: 2024-01-25 DOI: 10.1016/bs.pmbts.2024.01.003
Minh Nam Nguyen, Van Thai Than
{"title":"RNA therapeutics in cancer treatment.","authors":"Minh Nam Nguyen, Van Thai Than","doi":"10.1016/bs.pmbts.2024.01.003","DOIUrl":"10.1016/bs.pmbts.2024.01.003","url":null,"abstract":"<p><p>RNA therapeutics are a class of drugs that use RNA molecules to treat diseases, including cancer. RNA therapeutics work by targeting specific genes or proteins involved in the disease process, with the aim of blocking or altering their activity to ultimately halt or reverse the disease progression. The use of RNA therapeutics in cancer treatment has shown great potential, as they offer the ability to specifically target cancer cells while leaving healthy cells intact. This is in contrast to traditional chemotherapy and radiation treatments, which can damage healthy cells and cause unpleasant side effects. The field of RNA therapeutics is rapidly advancing, with several types of RNA molecules being developed for cancer treatment, including small interfering RNA, microRNA, mRNA, and RNA aptamers. Each type of RNA molecule has unique properties and mechanisms of action, allowing for targeted and personalized cancer treatments. In this chapter, we will explore the different types of RNA therapeutics used in cancer treatment, their mechanisms of action, and their potential applications in treating different types of cancer. We will also discuss the challenges and opportunities in the development and research of RNA therapeutics for cancer, as well as the future outlook for this promising field.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"203 ","pages":"197-223"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA therapeutics for disorders of excretory system. 治疗排泄系统疾病的 RNA 疗法。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2024-01-01 Epub Date: 2024-01-25 DOI: 10.1016/bs.pmbts.2023.12.011
Thuy-Duong Vu, Mai Anh Nguyen, Adam Jurgoński, Dinh-Toi Chu
{"title":"RNA therapeutics for disorders of excretory system.","authors":"Thuy-Duong Vu, Mai Anh Nguyen, Adam Jurgoński, Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.12.011","DOIUrl":"10.1016/bs.pmbts.2023.12.011","url":null,"abstract":"<p><p>The excretory system is responsible for removing wastes from the human body, which plays a crucial role in our lives. Current treatments for diseases related to this system have shown several limitations; therefore, there is a rising need for novel methods. In this circumstance, RNA-based therapeutics have rapidly emerged as new and promising candidates. In fact, to date, a handful of potential drugs have passed the development step and entered the clinical pipeline. Among them, one drug received FDA approval to enter the global market, which is Oxlumo (Lumasiran) for the treatment of primary hyperoxaluria type 1. For other excretory diseases, such as paroxysmal nocturnal hemoglobinuria, urothelial cancer or renal cancer, RNA-based candidates are also being tested under clinical trials. Currently, the most potential types of RNA therapeutics to treat disorders of the excretory system are those based on small interfering RNA (siRNA), antisense oligonucleotides (ASO) and messenger RNA (mRNA), Among them, siRNA therapeutics seem to be the most promising, including Oxlumo and two other developing drug candidates. This chapter will provide a general overview on the application of RNA therapeutics in disorders of the excretory system.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"203 ","pages":"245-256"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Types of RNA therapeutics. RNA 疗法的类型。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2024-01-01 Epub Date: 2024-01-25 DOI: 10.1016/bs.pmbts.2023.12.022
Pouya Goleij, Mehregan Babamohamadi, Aryan Rezaee, Pantea Majma Sanaye, Mohammad Amin Khazeei Tabari, Sarvin Sadreddini, Reza Arefnezhad, Hossein Motedayyen
{"title":"Types of RNA therapeutics.","authors":"Pouya Goleij, Mehregan Babamohamadi, Aryan Rezaee, Pantea Majma Sanaye, Mohammad Amin Khazeei Tabari, Sarvin Sadreddini, Reza Arefnezhad, Hossein Motedayyen","doi":"10.1016/bs.pmbts.2023.12.022","DOIUrl":"10.1016/bs.pmbts.2023.12.022","url":null,"abstract":"<p><p>RNA therapy is one of the new treatments using small RNA molecules to target and regulate gene expression. It involves the application of synthetic or modified RNA molecules to inhibit the expression of disease-causing genes specifically. In other words, it silences genes and suppresses the transcription process. The main theory behind RNA therapy is that RNA molecules can prevent the translation into proteins by binding to specific messenger RNA (mRNA) molecules. By targeting disease-related mRNA molecules, RNA therapy can effectively silence or reduce the development of harmful proteins. There are different types of RNA molecules used in therapy, including small interfering RNAs (siRNAs), microRNAs (miRNAs), aptamer, ribozyme, and antisense oligonucleotides (ASOs). These molecules are designed to complement specific mRNA sequences, allowing them to bind and degrade the targeted mRNA or prevent its translation into protein. Nanotechnology is also highlighted to increase the efficacy of RNA-based drugs. In this chapter, while examining various methods of RNA therapy, we discuss the advantages and challenges of each.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"203 ","pages":"41-63"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational biology approaches for drug repurposing. 药物再利用的计算生物学方法。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2024-01-01 Epub Date: 2024-04-04 DOI: 10.1016/bs.pmbts.2024.03.018
Tanya Waseem, Tausif Ahmed Rajput, Muhammad Saqlain Mushtaq, Mustafeez Mujtaba Babar, Jayakumar Rajadas
{"title":"Computational biology approaches for drug repurposing.","authors":"Tanya Waseem, Tausif Ahmed Rajput, Muhammad Saqlain Mushtaq, Mustafeez Mujtaba Babar, Jayakumar Rajadas","doi":"10.1016/bs.pmbts.2024.03.018","DOIUrl":"10.1016/bs.pmbts.2024.03.018","url":null,"abstract":"<p><p>The drug discovery and development (DDD) process greatly relies on the data available in various forms to generate hypotheses for novel drug design. The complex and heterogeneous nature of biological data makes it difficult to utilize or gather meaningful information as such. Computational biology techniques have provided us with opportunities to better understand biological systems through refining and organizing large amounts of data into actionable and systematic purviews. The drug repurposing approach has been utilized to overcome the expansive time periods and costs associated with traditional drug development. It deals with discovering new uses of already approved drugs that have an established safety and efficacy profile, thereby, requiring them to go through fewer development phases. Thus, drug repurposing through computational biology provides a systematic approach to drug development and overcomes the constraints of traditional processes. The current chapter covers the basics, approaches and tools of computational biology that can be employed to effectively develop repurposing profile of already approved drug molecules.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"205 ","pages":"91-109"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory considerations and intellectual property rights of repurposed drugs. 再利用药物的监管考虑因素和知识产权。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2024-01-01 Epub Date: 2024-04-04 DOI: 10.1016/bs.pmbts.2024.03.019
Hasan Afzaal, Tanya Waseem, Adil Saeed, Fahad Ali Noori, Obaidullah, Mustafeez Mujtaba Babar
{"title":"Regulatory considerations and intellectual property rights of repurposed drugs.","authors":"Hasan Afzaal, Tanya Waseem, Adil Saeed, Fahad Ali Noori, Obaidullah, Mustafeez Mujtaba Babar","doi":"10.1016/bs.pmbts.2024.03.019","DOIUrl":"10.1016/bs.pmbts.2024.03.019","url":null,"abstract":"<p><p>Drug repurposing has emerged as a promising approach in the drug discovery and development process as it offers safe and effective therapeutic options in a time effective manner. Though the issues related to pre-clinical and clinical aspects of drug development process are greatly addressed during drug repurposing yet regulatory perspectives gain even more However, like traditional drug development the repurposed drugs face multiple challenges. Such challenges range from the patenting rights, novelty of repurposing, data and market exclusivity to affordability and equitable access to the patient population. In order to optimize the market access of repurposed drugs, regulatory organizations throughout the world have developed accelerated approval procedures. The regulatory bodies have recognized the importance of repurposing approaches and repurposed drugs. Regulatory bodies can encourage the development of repurposed drugs by providing incentives to pharmaceutical companies and more accessible and affordable repurposed agents for the general population. This chapter summarizes the regulatory and ethical considerations pertaining to the repurposed drugs and highlights a few cases of intellectual property rights for repurposed drugs that have helped improve patient's access to safe, efficacious and cost-effective therapeutic options.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"205 ","pages":"357-375"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信