Progress in Molecular Biology and Translational Science最新文献

筛选
英文 中文
Advances in applications of the CRISPR/Cas9 system for respiratory diseases. CRISPR/Cas9系统在呼吸系统疾病中的应用进展
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-08-16 DOI: 10.1016/bs.pmbts.2024.07.014
C Bindu Ajaykumar, Sripriya Rajkumar, Bharathi Suresh, Girish Birappa, D A Ayush Gowda, Aparna Jayachandran, Kye-Seong Kim, Seok-Ho Hong, Suresh Ramakrishna
{"title":"Advances in applications of the CRISPR/Cas9 system for respiratory diseases.","authors":"C Bindu Ajaykumar, Sripriya Rajkumar, Bharathi Suresh, Girish Birappa, D A Ayush Gowda, Aparna Jayachandran, Kye-Seong Kim, Seok-Ho Hong, Suresh Ramakrishna","doi":"10.1016/bs.pmbts.2024.07.014","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.014","url":null,"abstract":"<p><p>Genetic and environmental factors can have an impact on lung and respiratory disorders which are associated with severe symptoms and have high mortality rates. Many respiratory diseases are significantly influenced by genetic or epigenetic factors. Gene therapy offers a powerful approach providing therapeutic treatment for lung diseases. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR/Cas9) are promising gene modifying tool that can edit the genome. The utilization of CRISPR/Cas9 systems in the investigation of respiratory disorders has resulted in advancements such as the rectification of deleterious mutations in patient-derived cells and the alteration of genes in multiple mammalian lung disease models. New avenues of treatment for lung disorders have been opened up by advances in CRISPR/Cas9 research. In this chapter, we discuss the known genes and mutations that cause several common respiratory disorders such as COPD, asthma, IPF, and ARDS. We further review the current research using CRISPR/Cas9 in numerous respiratory disorders and possible therapeutic treatments.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"127-147"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent development in CRISPR-Cas systems for cardiac disease. CRISPR-Cas系统治疗心脏病的最新进展。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-08-31 DOI: 10.1016/bs.pmbts.2024.08.004
Ingita Dey Munshi, Mansi Acharya, Sridip Mukherjee, Indra Mani
{"title":"Recent development in CRISPR-Cas systems for cardiac disease.","authors":"Ingita Dey Munshi, Mansi Acharya, Sridip Mukherjee, Indra Mani","doi":"10.1016/bs.pmbts.2024.08.004","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.08.004","url":null,"abstract":"<p><p>The CRISPR-Cas system has emerged as a revolutionary tool in genetic research, enabling highly precise gene editing and significantly advancing the field of cardiovascular science. This chapter provides a comprehensive overview of the latest developments in utilizing CRISPR-Cas technologies to investigate and treat heart diseases. It delves into the application of CRISPR-Cas9 for creating accurate models of complex cardiac conditions, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and various arrhythmias, which are essential for understanding disease mechanisms and testing potential therapies. The therapeutic potential of gene editing is also explored, with a focus on genes like PCSK9 and ANGPTL3 that play critical roles in lipid metabolism and cardiovascular health, offering promising avenues for new treatments. Furthermore, the expanding applications of CRISPR in heart tissue regeneration are examined, which could revolutionize the repair of damaged heart tissue. Cutting-edge techniques such as base editing and prime editing are discussed, highlighting their potential to further refine genetic interventions. The discussion concludes by addressing the challenges associated with delivering CRISPR components efficiently and safely, while also exploring recent innovations that may overcome these hurdles, providing insights into the future directions of CRISPR technology in cardiovascular medicine.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"47-93"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in CRISPR-Cas-system for neurological disorders. crispr - cas系统治疗神经系统疾病的最新进展。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-09-02 DOI: 10.1016/bs.pmbts.2024.07.017
Sarita Mishra, Shuvomoy Banerjee, Budhi Sagar Tiwari, Anand Krishna Tiwari
{"title":"Recent progress in CRISPR-Cas-system for neurological disorders.","authors":"Sarita Mishra, Shuvomoy Banerjee, Budhi Sagar Tiwari, Anand Krishna Tiwari","doi":"10.1016/bs.pmbts.2024.07.017","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.017","url":null,"abstract":"<p><p>Different neurological diseases including, Parkinson's, Alzheimer's, and Huntington's diseases extant momentous global disease burdens, affecting millions of lives for imposing a heavy disease burden on the healthcare systems. Despite various treatment strategies aimed at alleviating symptoms, treatments remain elusive and ineffective due to the disease's complexity. However, recent advancements in gene therapy via the CRISPR-Cas system offer ground-breaking and targeted treatment options. Based on a bacterial immune mechanism, the CRISPR-Cas system enables precise genome editing, allowing for the alteration of different genetic mutations and the possible cure of genetic diseases. In the context of neurological disorders, the CRISPR-Cas system shows a promising avenue by allowing researchers to conduct genome-editing which is implicated in neurodegenerative disease therapeutics. This book chapter provides an updated overview of the application of the CRISPR-Cas system for addressing target-specific therapeutic approaches for neurodegenerative disorders. Furthermore, we discuss the principles of the CRISPR-Cas mechanism, its role in modeling neurological disorders, identifying molecular targets, and developing gene-based therapies. Additionally, the chapter explores the recent clinical trials and CRISPR-Cas-mediated treatments for neurological conditions. By leveraging the accuracy and versatility of the CRISPR-Cas system, scientists can more effectively handle the genetic underpinnings of neurodegenerative diseases. Furthermore, the chapter extends the critical viewpoints on ethical considerations and technical limitations related to the clinical deployment of this revolutionizing technique.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"231-261"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of conformational integrity and aggregation propensity of α-synuclein by osmolytes: Implications in therapeutic intervention of Parkinson's disease.
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2025-01-21 DOI: 10.1016/bs.pmbts.2024.10.006
Ishfaq Ahmad Ahanger, Ishfaq Bashir Hajam, Owais Hassan Wani
{"title":"Modulation of conformational integrity and aggregation propensity of α-synuclein by osmolytes: Implications in therapeutic intervention of Parkinson's disease.","authors":"Ishfaq Ahmad Ahanger, Ishfaq Bashir Hajam, Owais Hassan Wani","doi":"10.1016/bs.pmbts.2024.10.006","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.10.006","url":null,"abstract":"<p><p>Understanding the factors capable of modulation of conformational stability and aggregation propensity of α-synuclein (α-Syn), a hallmark of Parkinson's disease (PD), is crucial for developing future therapeutic interventions for this disease. This chapter aims at exploring the roles of osmolytes in affecting the structural dynamics of α-Syn as well as focuses on how these osmolytes impact folding, stability, and aggregation behavior of this important intrinsically disordered protein. A number of potent osmolytes, including trimethylamine N-oxide (TMAO), trehalose, myo-inositol, taurine, glycine, glutamate, and glycerol were discussed along with their overall effect on α-Syn. These osmolytes can stabilize native conformations or promote alternative folding pathways, thereby influencing α-Syn aggregation. The chapter highlights the dual role of osmolytes in either preventing or exacerbating aggregation, depending on their concentration and interaction mechanism with α-Syn. Moreover, by integrating current research results, the chapter provides insights into how osmolytes might be utilized for therapeutic interventions with potential avenues for managing PD. Overall, the chapter underscores the significance of osmolyte-induced modulation of α-Syn aggregation in the context of PD and highlights future research areas in this direction.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"211 ","pages":"63-87"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of the structural dynamics, aggregation, and pathogenicity of polyQ-expanded Huntingtin by osmolytes.
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-09-07 DOI: 10.1016/bs.pmbts.2024.08.005
Alice Y Liu, Amala Mathew, Christopher Karim, Pierre Eshak, Kuang Yu Chen
{"title":"Regulation of the structural dynamics, aggregation, and pathogenicity of polyQ-expanded Huntingtin by osmolytes.","authors":"Alice Y Liu, Amala Mathew, Christopher Karim, Pierre Eshak, Kuang Yu Chen","doi":"10.1016/bs.pmbts.2024.08.005","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.08.005","url":null,"abstract":"<p><p>Huntington Disease is an autosomal dominant neurodegenerative disease caused by expansion of the polymorphic trinucleotide CAG repeat of the HTT gene to code for an expanded glutamine track of the mutant Huntingtin protein (mHTT). Like other neurodegenerative diseases, symptomatic presentation of Huntington Disease is age-dependent or age-related. This age-dependent manifestation of an autosomal dominant disease trait underscores important and possibly priming role of age-related changes in cellular physiology that are conducive to disease presentation. Herein, we present studies on the effects of osmolytes on mHTT structuring and aggregation, vis-a-vis pathogenicity. We show that stabilizing polyol osmolytes, by their generic activity in promoting protein structuring and compaction, drive aggregation of the disordered mHTT protein and simultaneously inhibit their binding to and sequestration of key transcription factors for improved homeostasis and cell survival under stress. These and related observations in the literature give strong support to the notion that lower molecular weight and structurally dynamic forms of mHTT contribute importantly to disease pathogenesis. Aging is associated with important changes in the cell environment-disease protein accumulation, reduced hydration, and macromolecular crowding as examples. These changes have significant consequences on the structuring and pathogenicity of the disordered mHTT protein. A crowded and less hydrated aging cell environment is conducive to mHTT binding to and inhibition of cell regulatory protein function on the one hand, and in promoting mHTT aggregation on the other hand, to culminate in Huntington disease presentation.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"211 ","pages":"113-143"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current progress in CRISPR-Cas systems for rare diseases. 罕见病CRISPR-Cas系统的最新进展。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-08-31 DOI: 10.1016/bs.pmbts.2024.07.019
Juveriya Israr, Ajay Kumar
{"title":"Current progress in CRISPR-Cas systems for rare diseases.","authors":"Juveriya Israr, Ajay Kumar","doi":"10.1016/bs.pmbts.2024.07.019","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.019","url":null,"abstract":"<p><p>The groundbreaking CRISPR-Cas gene editing method permits exact genetic code alteration. The \"CRISPR\" DNA protects bacteria from viruses. CRISPR-Cas utilizes a guide RNA to steer the Cas enzyme to the genome's gene editing target. After attaching to a sequence, Cas enzymes cleave DNA to insert, delete, or modify genes. The influence of CRISPR-Cas technology on molecular biology and genetics is profound. It allows for gene function research, animal disease models, and patient genetic therapy. Gene editing has transformed biotechnology, agriculture, and customized medicine. CRISPR-Cas could revolutionize genetics and medicine. CRISPR-Cas may accurately correct genetic flaws that underlie rare diseases, improving their therapy. Gene mutations make CRISPR-Cas gene editing a viable cure for uncommon diseases. We can use CRISPR-Cas to correct genetic abnormalities at the molecular level. This strategy offers hope for remedies and disease understanding. CRISPR-Cas genome editing may enable more targeted and effective treatments for rare medical illnesses with few therapy options. By developing base- and prime-editing CRISPR technology, CRISPR-Cas allows for accurate and efficient genome editing and advanced DNA modification. This advanced method provides precise DNA alterations without double-strand breakage. These advances have improved gene editing safety and precision, reducing unfavorable effects. Lipid nanoparticles, which use viral vectors, improve therapeutic cell and tissue targeting. In rare disorders, gene therapy may be possible with CRISPR-Cas clinical trials. CRISPR-Cas research is improving gene editing, delivery, and rare disease treatment.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"163-203"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osmolyte-IDP interactions during desiccation.
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-08-31 DOI: 10.1016/bs.pmbts.2024.08.007
Vincent Nicholson, Emma Meese, Thomas C Boothby
{"title":"Osmolyte-IDP interactions during desiccation.","authors":"Vincent Nicholson, Emma Meese, Thomas C Boothby","doi":"10.1016/bs.pmbts.2024.08.007","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.08.007","url":null,"abstract":"<p><p>Desiccation, the extreme loss of water, poses a significant challenge to living organisms. Desiccation-tolerant organisms combat this in part by accumulating desiccation tolerance intrinsically disordered proteins (DT-IDPs) and osmolytes within their cells. While both osmolytes and DT-IDPs help maintain cellular viability on their own, combinations of the two can work synergistically to provide enhanced protection and survival. This review summarises our understanding of the interactions between DT-IDPs and osmolytes during desiccation, and explores possible molecular mechanisms underlying them. Using recent literature on DT-IDPs and on the broader study of IDP-osmolyte interactions, we propose several hypotheses that explain interactions between DT-IDPs and osmolytes. Finally, we highlight several techniques from literature on DT-IDPs that we feel are useful to the study of IDPs in other contexts.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"211 ","pages":"39-61"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in CRISPR-Cas systems for kidney diseases. CRISPR-Cas系统治疗肾脏疾病的进展
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-08-17 DOI: 10.1016/bs.pmbts.2024.07.020
Bhupendra Puri, Yogesh A Kulkarni, Anil Bhanudas Gaikwad
{"title":"Advances in CRISPR-Cas systems for kidney diseases.","authors":"Bhupendra Puri, Yogesh A Kulkarni, Anil Bhanudas Gaikwad","doi":"10.1016/bs.pmbts.2024.07.020","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.020","url":null,"abstract":"<p><p>Recent advances in CRISPR-Cas systems have revolutionised the study and treatment of kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and polycystic kidney disease (PKD). CRISPR-Cas technology offers precise and versatile tools for genetic modification in monogenic kidney disorders such as PKD and Alport syndrome. Recent advances in CRISPR technology have also shown promise in addressing other kidney diseases like AKI, CKD, and DKD. CRISPR-Cas holds promise to edit genetic mutations underlying these conditions, potentially leading to more effective and long-lasting treatments. Furthermore, the adaptability of CRISPR-Cas systems allows for developing tailored therapeutic strategies that specifically target the genetic and molecular mechanisms contributing to different kidney diseases. Beyond DNA modifications, CRISPR-Cas technologies also enable editing noncoding RNA, such as lncRNAs and miRNAs, in kidney diseases. Despite these advancements, significant challenges persist, including delivery efficiency to specific kidney cells and potential off-target effects. However, the rapid progress in CRISPR-Cas technology suggests a transformative impact on the future management of kidney diseases, offering the potential for enhanced patient outcomes through personalised and precise therapeutic approaches. This chapter highlights the recent advancement of CRISPR-Cas systems and their potential applications in various kidney diseases.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"149-162"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osmolytes as structure-function regulators of intrinsically disordered casein proteins.
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-10-15 DOI: 10.1016/bs.pmbts.2024.09.003
Mohd Younus Bhat
{"title":"Osmolytes as structure-function regulators of intrinsically disordered casein proteins.","authors":"Mohd Younus Bhat","doi":"10.1016/bs.pmbts.2024.09.003","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.09.003","url":null,"abstract":"<p><p>Intrinsically disordered proteins (IDPs), despite lacking a stable structure, play crucial role in majority of the cellular processes. Casein, a key milk protein, represents this category of proteins, due to its dynamic and flexible structure which contributes towards the nutritional and functional properties of milk. The present chapter summarizes the role of osmolytes (small molecular weight organic molecules generally accumulated by cells to protect against denaturing stresses) in regulating the structure-function integrity of intrinsically disordered casein proteins. Osmolyte - casein interplay is of particular interest as these osmolytes have been found to affect the conformational flexibility and functional properties of casein proteins and thus can affect their overall behavior in the cellular environment. The present chapter delves into this by discussing the unique structural and functional properties of casein IDPs and the influence of osmolytes on their structure, stability, and chaperone activity. Elucidation of the osmolyte effects on the structural-functional integrity of caseins should advance our understanding of the dynamics of protein structure and function in complex biological environments and also offer practical perceptions for their future applications.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"211 ","pages":"17-38"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current approaches in CRISPR-Cas system for metabolic disorder. CRISPR-Cas系统治疗代谢紊乱的最新方法。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-08-16 DOI: 10.1016/bs.pmbts.2024.07.016
Yajushii Arora, Priya, Manishankar Kumar, Dhruv Kumar
{"title":"Current approaches in CRISPR-Cas system for metabolic disorder.","authors":"Yajushii Arora, Priya, Manishankar Kumar, Dhruv Kumar","doi":"10.1016/bs.pmbts.2024.07.016","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.07.016","url":null,"abstract":"<p><p>A new era in genomic medicine has been brought by the development of CRISPR-Cas technology, which presents hitherto unheard-of possibilities for the treatment of metabolic illnesses. The treatment approaches used in CRISPR/Cas9-mediated gene therapy, emphasize distribution techniques such as viral vectors and their use in preclinical models of metabolic diseases like hypercholesterolemia, glycogen storage diseases, and phenylketonuria. The relevance of high-throughput CRISPR screens for target identification in discovering new genes and pathways associated with metabolic dysfunctions is an important aspect of the discovery of new approaches. With cutting-edge options for genetic correction and cellular regeneration, the combination of CRISPR-Cas technology with stem cell therapy has opened new avenues for the treatment of metabolic illnesses. The integration of stem cell therapy and CRISPR-Cas technology is an important advance in the treatment of metabolic diseases, which are difficult to treat because of their intricate genetic foundations. This chapter addresses the most recent developments in the application of stem cell therapy and CRISPR-Cas systems to treat a variety of metabolic disorders, providing fresh hope for effective and maybe curative therapies. This chapter examines techniques and developments that have been made recently to address a variety of metabolic disorders using CRISPR-Cas systems. Our chapter focuses on the foundational workings of CRISPR-Cas technology and its potential uses in gene editing, gene knockout, and activation/repression-based gene modification.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"1-19"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信