{"title":"RNA therapeutics: Molecular mechanisms, and potential clinical translations.","authors":"Tiep Tien Nguyen, Yen Vi Nguyen Thi, Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.12.012","DOIUrl":"10.1016/bs.pmbts.2023.12.012","url":null,"abstract":"<p><p>RNA therapies involve the utilization of natural and artificial RNA molecules to control the expression and function of cellular genes and proteins. Initializing from 1990s, RNA therapies now show the rapid growth in the development and application of RNA therapeutics for treating various conditions, especially for undruggable diseases. The outstanding success of recent mRNA vaccines against COVID-19 infection again highlighted the important role of RNA therapies in future medicine. In this review, we will first briefly provide the crucial investigations on RNA therapy, from the first pieces of discovery on RNA molecules to clinical applications of RNA therapeutics. We will then classify the mechanisms of RNA therapeutics from various classes in the treatment of diseases. To emphasize the huge potential of RNA therapies, we also provide the key RNA products that have been on clinical trials or already FDA-approved. With comprehensive knowledge on RNA biology, and the advances in analysis, technology and computer-aid science, RNA therapies can bring a promise to be more expanding to the market in the future.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current progress in high-throughput screening for drug repurposing.","authors":"Khushal Khambhati, Deepak Siruka, Suresh Ramakrishna, Vijai Singh","doi":"10.1016/bs.pmbts.2024.03.013","DOIUrl":"10.1016/bs.pmbts.2024.03.013","url":null,"abstract":"<p><p>High-throughput screening (HTS) is a simple, rapid and cost-effective solution to determine active candidates from large library of compounds. HTS is gaining attention from Pharmaceuticals and Biotechnology companies for accelerating their drug discovery programs. Conventional drug discovery program is time consuming and expensive. In contrast drug repurposing approach is cost-effective and increases speed of drug discovery as toxicity profile is already known. The present chapter highlight HTS technology including microplate, microfluidics, lab-on-chip, organ-on-chip for drug repurposing. The current chapter also highlights the application of HTS for bacterial infections and cancer.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An introduction to RNA therapeutics and their potentials.","authors":"Nhat-Le Bui, Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.12.020","DOIUrl":"10.1016/bs.pmbts.2023.12.020","url":null,"abstract":"<p><p>RNA therapeutics is a biological term regarding the usage of RNA-based molecules for medical purposes. Thanks to the success of mRNA-vaccine production against COVID-19, RNA therapeutics has gained more and more attention and investigation from worldwide scientists. It is considered as one of the promising alternatives for conventional drugs. In this first chapter, we presented an overview of the history and perspectives of RNA therapeutics' development. This chapter also explained the underlying mechanisms of different RNA-based molecules, including antisense oligonucleotide, interfering RNA (iRNA), aptamer, and mRNA, from degrading mRNA to inactivating targeted protein. Although there are many advantages of RNA therapeutics, its challenges in designing RNA chemical structure and the delivery vehicle need to be discussed. We described advanced technologies in the development of drug delivery systems that are positively correlated to the efficacy of the drug. Our aim is to provide a general background of RNA therapeutics to the audience before introducing plenty of more detailed parts, including clinical applications in certain diseases in the following chapters of the \"RNA therapeutics\" book.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNA therapeutics for neurological disease.","authors":"Lien Nguyen","doi":"10.1016/bs.pmbts.2024.01.005","DOIUrl":"10.1016/bs.pmbts.2024.01.005","url":null,"abstract":"<p><p>Neurological disorders are the group of diseases that primarily affect the center nervous system, which could lead to a significant negative impact on the ability of learning new skills, speaking, breathing, walking, judging, making decision, and other essential living skills. In the last decade, neurological disorders have significantly increased their impact to our community and become the one of leading causes of disability and death. The World Health Organization has identified neurological disorders including Alzheimer's disease and other dementia as the health crisis for the modern life. Tremendous ongoing research efforts focus on understanding of disease genetics, molecular mechanisms and developing therapeutic interventions. Because of the urgent need of the effective therapeutics and the recent advances in the toolkits and understanding for developing more drug-like RNA molecules, there is a growing interest for developing RNA therapeutics for neurological disorders. This article will discuss genetics and mechanisms of neurological disorders and how RNA-based molecules have been used to develop therapeutics for this group of diseases, challenges of RNA therapeutics and future perspectives on this rising therapeutic intervention tool.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNA therapeutics for respiratory diseases.","authors":"Hue Vu Thi, Linh Thao Tran, Huy Quang Nguyen, Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.12.021","DOIUrl":"10.1016/bs.pmbts.2023.12.021","url":null,"abstract":"<p><p>It has become increasingly common to utilize RNA treatment to treat respiratory illnesses. Experimental research on both people and animals has advanced quickly since the turn of the twenty-first century in an effort to discover a treatment for respiratory ailments that could not be accomplished with earlier techniques, specifically in treating prevalent respiratory diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), respiratory infections caused by viruses, and asthma. This chapter has provided a comprehensive overview of the scientific evidence in applying RNA therapy to treat respiratory diseases. The chapter describes the development of this therapy for respiratory diseases. At the same time, the types of RNA therapy for respiratory diseases have been highlighted. In addition, the mechanism of this therapy for respiratory diseases has also been covered. These insights are indispensable if this therapy is to be developed widely.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current approaches in identification of a novel drug targets for drug repurposing.","authors":"Khushal Khambhati, Vijai Singh","doi":"10.1016/bs.pmbts.2024.03.020","DOIUrl":"10.1016/bs.pmbts.2024.03.020","url":null,"abstract":"<p><p>Currently, millions of drugs and their licence have been expired or will be expiring in near future. Therefore, existing USFDA approved drug can be used for treating another disease. The above-mentioned approach falls under the category of drug repurposing. Drug repurposing is an alternative strategy for finding new applications of existing USFDA approved drugs. Identification of a novel drug target is one of the go to way for drug repurposing so that new therapeutic applications of USFDA approved drugs could be determined. Recent advances in computational biology and bioinformatics can help to accelerate the same. Drug repurposing can save time and resource as compared to discovery of an entirely new drug molecule. In this chapter, we explore different strategies for discovery of a novel drug target and its uses for drug repurposing to treat disease.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNA therapeutics for metabolic disorders.","authors":"Thuy-Duong Vu, Sheng-Che Lin, Chia-Ching Wu, Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.12.014","DOIUrl":"10.1016/bs.pmbts.2023.12.014","url":null,"abstract":"<p><p>The prevalence of metabolic disorders is increasing exponentially and has recently reached epidemic levels. Over the decades, a large number of therapeutic options have been proposed to manage these diseases but still show several limitations. In this circumstance, RNA therapeutics have rapidly emerged as a new hope for patients with metabolic diseases. 57 years have elapsed from the discovery of mRNA, a large number of RNA-based drug candidates have been evaluated for their therapeutic effectiveness and clinical safety under clinical studies. To date, there are seven RNA drugs for treating metabolic disorders receiving official approval and entering the global market. Their targets include hereditary transthyretin-mediated amyloidosis (hATTR), familial chylomicronemia syndrome, acute hepatic porphyria, primary hyperoxaluria type 1 and hypercholesterolemia, which are all related to liver proteins. All of these seven RNA drugs are antisense oligonucleotides (ASO) and small interfering RNA (siRNA). These two types of treatment are both based on oligonucleotides complementary to target RNA through Watson-Crick base-pairing, but their mechanisms of action include different nucleases. Such treatments show greatest potential among all types of RNA therapeutics due to consecutive achievements in chemical modifications. Another method, mRNA therapeutics also promise a brighter future for patients with a handful of drug candidates currently under development.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advantages and disadvantages of RNA therapeutics.","authors":"Binh Le Huy, Hai Bui Thi Phuong, Huy Luong Xuan","doi":"10.1016/bs.pmbts.2023.12.016","DOIUrl":"10.1016/bs.pmbts.2023.12.016","url":null,"abstract":"<p><p>RNA therapeutics is an innovative and rapidly evolving field at the forefront of medical research and biotechnology. Recently, many studies have shown that diverse RNA types play important roles in cells. Besides the protein translation coding, they also express and regulate a variety of cellular pathways. Indeed, along with the research and studies, many drugs and vaccines were developed from RNAs, including both coding and non-coding RNA. Some cases were approved to be medicines or under clinical trial. After years of use and application, they have shown a bright opportunity to prevent and treat many fatal and rare diseases with many strong points, such as fast production and long-term effects. Besides, they still have some drawbacks that need to be overcome, like stability or delivery to become the new generation of medicine. Therefore, this chapter focuses on providing an overview of the advantages and disadvantages of RNA therapeutics as well as some crucial points for future development.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yen Vy Nguyen Thi, Thuy Tien Ho, Safak Caglayan, Thamil Selvee Ramasamy, Dinh-Toi Chu
{"title":"RNA therapeutics for treatment of diabetes.","authors":"Yen Vy Nguyen Thi, Thuy Tien Ho, Safak Caglayan, Thamil Selvee Ramasamy, Dinh-Toi Chu","doi":"10.1016/bs.pmbts.2023.12.013","DOIUrl":"10.1016/bs.pmbts.2023.12.013","url":null,"abstract":"<p><p>Diabetes is an ongoing global problem as it affects health of more than 537 million people around the world. Diabetes leaves many serious complications that affect patients and can cause death if not detected and treated promptly. Some of the complications of diabetes include impaired vascular system, increased risk of stroke, neurological diseases that cause pain and numbness, diseases related to the retina leading to blindness, and other complications affecting kidneys, heart failure, muscle weakness, muscle atrophy. All complications of diabetes seriously affect the health of patients. Recently, gene therapy has emerged as a viable treatment strategy for various diseases. DNA and RNA are among the target molecules that can change the structure and function of proteins and are effective methods of treating diseases, especially genetically inherited diseases. RNA therapeutics has attracted deep interest as it has been approved for application in the treatment of functional system disorders such as spinal muscular atrophy, and muscular dystrophy. In this review, we cover the types of RNA therapies considered for treatment of diabetes. In particular, we delve into the mechanism of action of RNA therapies for diabetes, and studies involving testing of these RNA therapies. Finally, we have highlighted the limitations of the current understanding in the mechanism of action of RNA therapies.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neetu Rani, Aastha Kaushik, Shefali Kardam, Sonika Kag, V Samuel Raj, Rashmi K Ambasta, Pravir Kumar
{"title":"Reimagining old drugs with new tricks: Mechanisms, strategies and notable success stories in drug repurposing for neurological diseases.","authors":"Neetu Rani, Aastha Kaushik, Shefali Kardam, Sonika Kag, V Samuel Raj, Rashmi K Ambasta, Pravir Kumar","doi":"10.1016/bs.pmbts.2024.03.029","DOIUrl":"10.1016/bs.pmbts.2024.03.029","url":null,"abstract":"<p><p>Recent evolution in drug repurposing has brought new anticipation, especially in the conflict against neurodegenerative diseases (NDDs). The traditional approach to developing novel drugs for these complex disorders is laborious, time-consuming, and often abortive. However, drug reprofiling which is the implementation of illuminating novel therapeutic applications of existing approved drugs, has shown potential as a promising strategy to accelerate the hunt for therapeutics. The advancement of computational approaches and artificial intelligence has expedited drug repurposing. These progressive technologies have enabled scientists to analyse extensive datasets and predict potential drug-disease interactions. By prospecting into the existing pharmacological knowledge, scientists can recognise potential therapeutic candidates for reprofiling, saving precious time and resources. Preclinical models have also played a pivotal role in this field, confirming the effectiveness and mechanisms of action of repurposed drugs. Several studies have occurred in recent years, including the discovery of available drugs that demonstrate significant protective effects in NDDs, relieve debilitating symptoms, or slow down the progression of the disease. These findings highlight the potential of repurposed drugs to change the landscape of NDD treatment. Here, we present an overview of recent developments and major advances in drug repurposing intending to provide an in-depth analysis of traditional drug discovery and the strategies, approaches and technologies that have contributed to drug repositioning. In addition, this chapter attempts to highlight successful case studies of drug repositioning in various therapeutic areas related to NDDs and explore the clinical trials, challenges and limitations faced by researchers in the field. Finally, the importance of drug repositioning in drug discovery and development and its potential to address discontented medical needs is also highlighted.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}