Progress in Molecular Biology and Translational Science最新文献

筛选
英文 中文
T-cell immunobiology and cytokine storm of COVID-19. COVID-19的t细胞免疫生物学和细胞因子风暴。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2025-01-31 DOI: 10.1016/bs.pmbts.2024.10.003
Ahmed Eltayeb, Elrashdy M Redwan
{"title":"T-cell immunobiology and cytokine storm of COVID-19.","authors":"Ahmed Eltayeb, Elrashdy M Redwan","doi":"10.1016/bs.pmbts.2024.10.003","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.10.003","url":null,"abstract":"<p><p>The 2019 coronavirus illness (COVID 2019) first manifests as a newly identified pneumonia and may quickly escalate to acute respiratory distress syndrome, which has caused a global pandemic. Except for individualized supportive care, no curative therapy has been steadfastly advised for COVID-19 up until this point. T cells and virus-specific T lymphocytes are required to guard against viral infection, particularly COVID-19. Delayed immunological reconstitution (IR) and cytokine storm (CS) continue to be significant barriers to COVID-19 cure. While severe COVID-19 patients who survived the disease had considerable lymphopenia and increased neutrophils, especially in the elderly, their T cell numbers gradually recovered. Exhausted T lymphocytes and elevated levels of pro-inflammatory cytokines, including IL6, IL10, IL2, and IL17, are observed in peripheral blood and the lungs. It implies that while convalescent plasma, IL-6 blocking, mesenchymal stem cells, and corticosteroids might decrease CS, Thymosin α1 and adaptive COVID-19-specific T cells could enhance IR. There is an urgent need for more clinical research in this area throughout the world to open the door to COVID-19 treatment in the future.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"213 ","pages":"1-30"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144056536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osmolytes as structure-function regulators of intrinsically disordered casein proteins. 渗透酶作为内在无序酪蛋白的结构功能调节剂。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-10-15 DOI: 10.1016/bs.pmbts.2024.09.003
Mohd Younus Bhat
{"title":"Osmolytes as structure-function regulators of intrinsically disordered casein proteins.","authors":"Mohd Younus Bhat","doi":"10.1016/bs.pmbts.2024.09.003","DOIUrl":"10.1016/bs.pmbts.2024.09.003","url":null,"abstract":"<p><p>Intrinsically disordered proteins (IDPs), despite lacking a stable structure, play crucial role in majority of the cellular processes. Casein, a key milk protein, represents this category of proteins, due to its dynamic and flexible structure which contributes towards the nutritional and functional properties of milk. The present chapter summarizes the role of osmolytes (small molecular weight organic molecules generally accumulated by cells to protect against denaturing stresses) in regulating the structure-function integrity of intrinsically disordered casein proteins. Osmolyte - casein interplay is of particular interest as these osmolytes have been found to affect the conformational flexibility and functional properties of casein proteins and thus can affect their overall behavior in the cellular environment. The present chapter delves into this by discussing the unique structural and functional properties of casein IDPs and the influence of osmolytes on their structure, stability, and chaperone activity. Elucidation of the osmolyte effects on the structural-functional integrity of caseins should advance our understanding of the dynamics of protein structure and function in complex biological environments and also offer practical perceptions for their future applications.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"211 ","pages":"17-38"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in CRISPR-Cas systems for kidney diseases. CRISPR-Cas系统治疗肾脏疾病的进展
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-08-17 DOI: 10.1016/bs.pmbts.2024.07.020
Bhupendra Puri, Yogesh A Kulkarni, Anil Bhanudas Gaikwad
{"title":"Advances in CRISPR-Cas systems for kidney diseases.","authors":"Bhupendra Puri, Yogesh A Kulkarni, Anil Bhanudas Gaikwad","doi":"10.1016/bs.pmbts.2024.07.020","DOIUrl":"10.1016/bs.pmbts.2024.07.020","url":null,"abstract":"<p><p>Recent advances in CRISPR-Cas systems have revolutionised the study and treatment of kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and polycystic kidney disease (PKD). CRISPR-Cas technology offers precise and versatile tools for genetic modification in monogenic kidney disorders such as PKD and Alport syndrome. Recent advances in CRISPR technology have also shown promise in addressing other kidney diseases like AKI, CKD, and DKD. CRISPR-Cas holds promise to edit genetic mutations underlying these conditions, potentially leading to more effective and long-lasting treatments. Furthermore, the adaptability of CRISPR-Cas systems allows for developing tailored therapeutic strategies that specifically target the genetic and molecular mechanisms contributing to different kidney diseases. Beyond DNA modifications, CRISPR-Cas technologies also enable editing noncoding RNA, such as lncRNAs and miRNAs, in kidney diseases. Despite these advancements, significant challenges persist, including delivery efficiency to specific kidney cells and potential off-target effects. However, the rapid progress in CRISPR-Cas technology suggests a transformative impact on the future management of kidney diseases, offering the potential for enhanced patient outcomes through personalised and precise therapeutic approaches. This chapter highlights the recent advancement of CRISPR-Cas systems and their potential applications in various kidney diseases.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"149-162"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface. 前言。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 DOI: 10.1016/S1877-1173(25)00027-4
Tanveer A Dar, Laishram R Singh, Vladimir N Uversky
{"title":"Preface.","authors":"Tanveer A Dar, Laishram R Singh, Vladimir N Uversky","doi":"10.1016/S1877-1173(25)00027-4","DOIUrl":"https://doi.org/10.1016/S1877-1173(25)00027-4","url":null,"abstract":"","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"211 ","pages":"xiii-xiv"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COVID-19 related complications. COVID-19相关并发症。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2025-03-06 DOI: 10.1016/bs.pmbts.2025.02.002
Muhamed Adilović
{"title":"COVID-19 related complications.","authors":"Muhamed Adilović","doi":"10.1016/bs.pmbts.2025.02.002","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2025.02.002","url":null,"abstract":"<p><p>The COVID-19 pandemic has significantly impacted global healthcare systems, revealed vulnerabilities and prompted a re-evaluation of medical practices. Acute complications from the virus, including cardiovascular and neurological issues, have underscored the necessity for timely medical interventions. Advances in diagnostic methods and personalized therapies have been pivotal in mitigating severe outcomes. Additionally, Long COVID has emerged as a complex challenge, affecting various body systems and leading to respiratory, cardiovascular, neurological, psychological, and musculoskeletal problems. This broad spectrum of complications highlights the importance of multidisciplinary management approaches that prioritize therapy, rehabilitation, and patient-centered care. Vulnerable populations such as paediatric patients, pregnant women, and immunocompromised individuals face unique risks and complications, necessitating continuous monitoring and tailored management strategies to reduce morbidity and mortality associated with COVID-19.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"213 ","pages":"259-314"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144021971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrophils and COVID-19. 中性粒细胞与COVID-19。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2025-03-05 DOI: 10.1016/bs.pmbts.2025.02.003
Jasmin Šutković
{"title":"Neutrophils and COVID-19.","authors":"Jasmin Šutković","doi":"10.1016/bs.pmbts.2025.02.003","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2025.02.003","url":null,"abstract":"<p><p>Neutrophils are the first line of defense against pathogens, most effectively by forming Neutrophil Extracellular Traps (NETs). Neutrophiles are further classified into several subpopulations during their development, eliminating pathogens through various mechanisms. However, due to the chaotic and uncontrolled immune response, NETs are often severely resulting in tissue damage and lung infections. The uncontrolled and poorly acknowledged host response regarding the cytokine storm is one of the major causes of severe COVID-19 conditions. Specifically, the increased formation of low-density neutrophils (LDNs), together with neutrophil extracellular traps (NETs) is closely linked with the severity and poor prognosis in patients with COVID-19. In this review, we discuss in detail the ontogeny of neutrophils at different stages and their recruitment and activation after infections, focusing on SARS-CoV-2. In addition, this chapter summarized the research progress on potential targeted drugs (NETs and Cytokine inhibitors) for neutrophil medical therapy and hoped to provide reference for the development of related therapeutic drugs for critically ill COVID-19 patients.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"213 ","pages":"347-384"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144004400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current approaches in CRISPR-Cas system for metabolic disorder. CRISPR-Cas系统治疗代谢紊乱的最新方法。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-08-16 DOI: 10.1016/bs.pmbts.2024.07.016
Yajushii Arora, Priya, Manishankar Kumar, Dhruv Kumar
{"title":"Current approaches in CRISPR-Cas system for metabolic disorder.","authors":"Yajushii Arora, Priya, Manishankar Kumar, Dhruv Kumar","doi":"10.1016/bs.pmbts.2024.07.016","DOIUrl":"10.1016/bs.pmbts.2024.07.016","url":null,"abstract":"<p><p>A new era in genomic medicine has been brought by the development of CRISPR-Cas technology, which presents hitherto unheard-of possibilities for the treatment of metabolic illnesses. The treatment approaches used in CRISPR/Cas9-mediated gene therapy, emphasize distribution techniques such as viral vectors and their use in preclinical models of metabolic diseases like hypercholesterolemia, glycogen storage diseases, and phenylketonuria. The relevance of high-throughput CRISPR screens for target identification in discovering new genes and pathways associated with metabolic dysfunctions is an important aspect of the discovery of new approaches. With cutting-edge options for genetic correction and cellular regeneration, the combination of CRISPR-Cas technology with stem cell therapy has opened new avenues for the treatment of metabolic illnesses. The integration of stem cell therapy and CRISPR-Cas technology is an important advance in the treatment of metabolic diseases, which are difficult to treat because of their intricate genetic foundations. This chapter addresses the most recent developments in the application of stem cell therapy and CRISPR-Cas systems to treat a variety of metabolic disorders, providing fresh hope for effective and maybe curative therapies. This chapter examines techniques and developments that have been made recently to address a variety of metabolic disorders using CRISPR-Cas systems. Our chapter focuses on the foundational workings of CRISPR-Cas technology and its potential uses in gene editing, gene knockout, and activation/repression-based gene modification.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"1-19"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in CRISPR/Cas9 system for eye disorders. CRISPR/Cas9系统治疗眼部疾病的最新进展。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2024-08-17 DOI: 10.1016/bs.pmbts.2024.07.018
D A Ayush Gowda, Girish Birappa, Sripriya Rajkumar, C Bindu Ajaykumar, Bhavana Srikanth, Sammy L Kim, Vijai Singh, Aparna Jayachandran, Junwon Lee, Suresh Ramakrishna
{"title":"Recent progress in CRISPR/Cas9 system for eye disorders.","authors":"D A Ayush Gowda, Girish Birappa, Sripriya Rajkumar, C Bindu Ajaykumar, Bhavana Srikanth, Sammy L Kim, Vijai Singh, Aparna Jayachandran, Junwon Lee, Suresh Ramakrishna","doi":"10.1016/bs.pmbts.2024.07.018","DOIUrl":"10.1016/bs.pmbts.2024.07.018","url":null,"abstract":"<p><p>Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system holds considerable promise for therapeutic applications in the field of ophthalmology, including repair of aberrant genes and treatment of retinal illnesses related to the genome or epigenome. Application of CRISPR/Cas9 systems to the study of ocular disease and visual sciences have yielded innovations including correction of harmful mutations in patient-derived cells and gene modifications in several mammalian models of eye development and disease. In this study, we discuss the generation of several ocular disease models in mammalian cell lines and in vivo systems using a CRISPR/Cas9 system. We also provide an overview of current uses of CRISPR/Cas9 technologies for the treatment of ocular pathologies, as well as future challenges.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"21-46"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface. 前言。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 DOI: 10.1016/S1877-1173(25)00011-0
Vijai Singh
{"title":"Preface.","authors":"Vijai Singh","doi":"10.1016/S1877-1173(25)00011-0","DOIUrl":"https://doi.org/10.1016/S1877-1173(25)00011-0","url":null,"abstract":"","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"210 ","pages":"xvii"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular crowding and amyloidogenic self-assembly: Emergent perspectives from modern computations. 分子拥挤和淀粉样蛋白自组装:从现代计算的新兴观点。
3区 生物学
Progress in Molecular Biology and Translational Science Pub Date : 2025-01-01 Epub Date: 2025-01-21 DOI: 10.1016/bs.pmbts.2024.10.001
Hindol Chatterjee, Neelanjana Sengupta
{"title":"Molecular crowding and amyloidogenic self-assembly: Emergent perspectives from modern computations.","authors":"Hindol Chatterjee, Neelanjana Sengupta","doi":"10.1016/bs.pmbts.2024.10.001","DOIUrl":"10.1016/bs.pmbts.2024.10.001","url":null,"abstract":"<p><p>In recent decades, the conventional protein folding paradigm has been challenged by intriguing properties of disordered peptide sequences that do not adopt stably folded conformations. Such intrinsically disordered proteins and protein regions (IDPs and IDRs) are poised uniquely in biology due to their propensity for self-aggregation, amyloidogenesis, and correlations with a cluster of debilitating diseases. Complexities underlying their structural and functional manifestations are enhanced in the presence of molecular crowding via non-specific protein-protein and protein-solvent contacts. Enabled by technological advances, physics-based algorithms, and data science, modern computer simulations provide unprecedented insights into the structure, function, dynamics, and thermodynamics of complex macromolecular systems. These characteristics are frequently correlated and manifest into unique observables. This chapter presents an overview of how such methodologies can lend insights and drive investigations into the molecular trifecta of crowding, protein self-aggregation, and amyloidogenesis. It begins with a general overview of disordered proteins in relation to biological function and of a suite of relevant experimental methods. Specific examples are showcased in the biological context. This is followed by a description of the computational approaches that supplant experimental efforts, with an elaboration on enhanced molecular simulation methods. The chapter concludes by alluding to expanded possibilities in disease amelioration.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"211 ","pages":"209-247"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信