{"title":"COVID-19的t细胞免疫生物学和细胞因子风暴。","authors":"Ahmed Eltayeb, Elrashdy M Redwan","doi":"10.1016/bs.pmbts.2024.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>The 2019 coronavirus illness (COVID 2019) first manifests as a newly identified pneumonia and may quickly escalate to acute respiratory distress syndrome, which has caused a global pandemic. Except for individualized supportive care, no curative therapy has been steadfastly advised for COVID-19 up until this point. T cells and virus-specific T lymphocytes are required to guard against viral infection, particularly COVID-19. Delayed immunological reconstitution (IR) and cytokine storm (CS) continue to be significant barriers to COVID-19 cure. While severe COVID-19 patients who survived the disease had considerable lymphopenia and increased neutrophils, especially in the elderly, their T cell numbers gradually recovered. Exhausted T lymphocytes and elevated levels of pro-inflammatory cytokines, including IL6, IL10, IL2, and IL17, are observed in peripheral blood and the lungs. It implies that while convalescent plasma, IL-6 blocking, mesenchymal stem cells, and corticosteroids might decrease CS, Thymosin α1 and adaptive COVID-19-specific T cells could enhance IR. There is an urgent need for more clinical research in this area throughout the world to open the door to COVID-19 treatment in the future.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":"213 ","pages":"1-30"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T-cell immunobiology and cytokine storm of COVID-19.\",\"authors\":\"Ahmed Eltayeb, Elrashdy M Redwan\",\"doi\":\"10.1016/bs.pmbts.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 2019 coronavirus illness (COVID 2019) first manifests as a newly identified pneumonia and may quickly escalate to acute respiratory distress syndrome, which has caused a global pandemic. Except for individualized supportive care, no curative therapy has been steadfastly advised for COVID-19 up until this point. T cells and virus-specific T lymphocytes are required to guard against viral infection, particularly COVID-19. Delayed immunological reconstitution (IR) and cytokine storm (CS) continue to be significant barriers to COVID-19 cure. While severe COVID-19 patients who survived the disease had considerable lymphopenia and increased neutrophils, especially in the elderly, their T cell numbers gradually recovered. Exhausted T lymphocytes and elevated levels of pro-inflammatory cytokines, including IL6, IL10, IL2, and IL17, are observed in peripheral blood and the lungs. It implies that while convalescent plasma, IL-6 blocking, mesenchymal stem cells, and corticosteroids might decrease CS, Thymosin α1 and adaptive COVID-19-specific T cells could enhance IR. There is an urgent need for more clinical research in this area throughout the world to open the door to COVID-19 treatment in the future.</p>\",\"PeriodicalId\":49280,\"journal\":{\"name\":\"Progress in Molecular Biology and Translational Science\",\"volume\":\"213 \",\"pages\":\"1-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Molecular Biology and Translational Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2024.10.003\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Molecular Biology and Translational Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2024.10.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
T-cell immunobiology and cytokine storm of COVID-19.
The 2019 coronavirus illness (COVID 2019) first manifests as a newly identified pneumonia and may quickly escalate to acute respiratory distress syndrome, which has caused a global pandemic. Except for individualized supportive care, no curative therapy has been steadfastly advised for COVID-19 up until this point. T cells and virus-specific T lymphocytes are required to guard against viral infection, particularly COVID-19. Delayed immunological reconstitution (IR) and cytokine storm (CS) continue to be significant barriers to COVID-19 cure. While severe COVID-19 patients who survived the disease had considerable lymphopenia and increased neutrophils, especially in the elderly, their T cell numbers gradually recovered. Exhausted T lymphocytes and elevated levels of pro-inflammatory cytokines, including IL6, IL10, IL2, and IL17, are observed in peripheral blood and the lungs. It implies that while convalescent plasma, IL-6 blocking, mesenchymal stem cells, and corticosteroids might decrease CS, Thymosin α1 and adaptive COVID-19-specific T cells could enhance IR. There is an urgent need for more clinical research in this area throughout the world to open the door to COVID-19 treatment in the future.
期刊介绍:
Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.