Epigenetics & Chromatin最新文献

筛选
英文 中文
A low-input high resolution sequential chromatin immunoprecipitation method captures genome-wide dynamics of bivalent chromatin. 低投入高分辨率染色质免疫沉淀序列法捕捉二价染色质的全基因组动态。
IF 3.9 2区 生物学
Epigenetics & Chromatin Pub Date : 2024-02-10 DOI: 10.1186/s13072-024-00527-9
Janith A Seneviratne, William W H Ho, Eleanor Glancy, Melanie A Eckersley-Maslin
{"title":"A low-input high resolution sequential chromatin immunoprecipitation method captures genome-wide dynamics of bivalent chromatin.","authors":"Janith A Seneviratne, William W H Ho, Eleanor Glancy, Melanie A Eckersley-Maslin","doi":"10.1186/s13072-024-00527-9","DOIUrl":"10.1186/s13072-024-00527-9","url":null,"abstract":"<p><strong>Background: </strong>Bivalent chromatin is an exemplar of epigenetic plasticity. This co-occurrence of active-associated H3K4me3 and inactive-associated H3K27me3 histone modifications on opposite tails of the same nucleosome occurs predominantly at promoters that are poised for future transcriptional upregulation or terminal silencing. We know little of the dynamics, resolution, and regulation of this chromatin state outside of embryonic stem cells where it was first described. This is partly due to the technical challenges distinguishing bone-fide bivalent chromatin, where both marks are on the same nucleosome, from allelic or sample heterogeneity where there is a mix of H3K4me3-only and H3K27me3-only mononucleosomes.</p><p><strong>Results: </strong>Here, we present a robust and sensitive method to accurately map bivalent chromatin genome-wide, along with controls, from as little as 2 million cells. We optimized and refined the sequential ChIP protocol which uses two sequential overnight immunoprecipitation reactions to robustly purify nucleosomes that are truly bivalent and contain both H3K4me3 and H3K27me3 modifications. Our method generates high quality genome-wide maps with strong peak enrichment and low background, which can be analyzed using standard bioinformatic packages. Using this method, we detect 8,789 bivalent regions in mouse embryonic stem cells corresponding to 3,918 predominantly CpG rich and developmentally regulated gene promoters. Furthermore, profiling Dppa2/4 knockout mouse embryonic stem cells, which lose both H3K4me3 and H3K27me3 at approximately 10% of bivalent promoters, demonstrated the ability of our method to capture bivalent chromatin dynamics.</p><p><strong>Conclusions: </strong>Our optimized sequential reChIP method enables high-resolution genome-wide assessment of bivalent chromatin together with all required controls in as little as 2 million cells. We share a detailed protocol and guidelines that will enable bivalent chromatin landscapes to be generated in a range of cellular contexts, greatly enhancing our understanding of bivalent chromatin and epigenetic plasticity beyond embryonic stem cells.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139713285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin accessibility and cell cycle progression are controlled by the HDAC-associated Sin3B protein in murine hematopoietic stem cells. 在小鼠造血干细胞中,染色质可及性和细胞周期进展受 HDAC 相关 Sin3B 蛋白控制。
IF 4.2 2区 生物学
Epigenetics & Chromatin Pub Date : 2024-01-23 DOI: 10.1186/s13072-024-00526-w
Alexander Calderon, Tamara Mestvirishvili, Francesco Boccalatte, Kelly V Ruggles, Gregory David
{"title":"Chromatin accessibility and cell cycle progression are controlled by the HDAC-associated Sin3B protein in murine hematopoietic stem cells.","authors":"Alexander Calderon, Tamara Mestvirishvili, Francesco Boccalatte, Kelly V Ruggles, Gregory David","doi":"10.1186/s13072-024-00526-w","DOIUrl":"10.1186/s13072-024-00526-w","url":null,"abstract":"<p><strong>Background: </strong>Blood homeostasis requires the daily production of millions of terminally differentiated effector cells that all originate from hematopoietic stem cells (HSCs). HSCs are rare and exhibit unique self-renewal and multipotent properties, which depend on their ability to maintain quiescence through ill-defined processes. Defective control of cell cycle progression can eventually lead to bone marrow failure or malignancy. In particular, the molecular mechanisms tying cell cycle re-entry to cell fate commitment in HSCs remain elusive. Previous studies have identified chromatin coordination as a key regulator of differentiation in embryonic stem cells.</p><p><strong>Results: </strong>Here, we utilized genetic inactivation of the chromatin-associated Sin3B protein to manipulate cell cycle control and found dysregulated chromatin accessibility and cell cycle progression in HSCs. Single cell transcriptional profiling of hematopoietic stem and progenitor cells (HSPCs) inactivated for Sin3B reveals aberrant progression through the G<sub>1</sub> phase of the cell cycle, which correlates with the engagement of specific signaling pathways, including aberrant expression of cell adhesion molecules and the interferon signaling program in LT-HSCs. In addition, we uncover the Sin3B-dependent accessibility of genomic elements controlling HSC differentiation, which points to cell cycle progression possibly dictating the priming of HSCs for differentiation.</p><p><strong>Conclusions: </strong>Our findings provide new insights into controlled cell cycle progression as a potential regulator of HSC lineage commitment through the modulation of chromatin features.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139522059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of sex in immune response and epigenetic mechanisms. 性别在免疫反应和表观遗传机制中的作用。
IF 4.2 2区 生物学
Epigenetics & Chromatin Pub Date : 2024-01-22 DOI: 10.1186/s13072-024-00525-x
Sombodhi Bhattacharya, Debasmita Sadhukhan, Radha Saraswathy
{"title":"Role of sex in immune response and epigenetic mechanisms.","authors":"Sombodhi Bhattacharya, Debasmita Sadhukhan, Radha Saraswathy","doi":"10.1186/s13072-024-00525-x","DOIUrl":"10.1186/s13072-024-00525-x","url":null,"abstract":"<p><p>The functioning of the human immune system is highly dependent on the sex of the individual, which comes by virtue of sex chromosomes and hormonal differences. Epigenetic mechanisms such as X chromosome inactivation, mosaicism, skewing, and dimorphism in X chromosome genes and Y chromosome regulatory genes create a sex-based variance in the immune response between males and females. This leads to differential susceptibility in immune-related disorders like infections, autoimmunity, and malignancies. Various naturally available immunomodulators are also available which target immune pathways containing X chromosome genes.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802034/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139514211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Folate deficiency reduced aberrant level of DOT1L-mediated histone H3K79 methylation causes disruptive SHH gene expression involved in neural tube defects 叶酸缺乏会降低 DOT1L 介导的组蛋白 H3K79 甲基化的异常水平,导致 SHH 基因表达紊乱,从而引发神经管缺陷
IF 3.9 2区 生物学
Epigenetics & Chromatin Pub Date : 2023-12-14 DOI: 10.1186/s13072-023-00517-3
Xue Li, Pei Pei, Jinying Shen, Juan Yu, Fang Wang, Lei Wang, Changyun Liu, Shan Wang
{"title":"Folate deficiency reduced aberrant level of DOT1L-mediated histone H3K79 methylation causes disruptive SHH gene expression involved in neural tube defects","authors":"Xue Li, Pei Pei, Jinying Shen, Juan Yu, Fang Wang, Lei Wang, Changyun Liu, Shan Wang","doi":"10.1186/s13072-023-00517-3","DOIUrl":"https://doi.org/10.1186/s13072-023-00517-3","url":null,"abstract":"Neural tube defects (NTDs) are one of the most severe congenital abnormalities characterized by failures of the neural tube to close during early embryogenesis. Maternal folate deficiency could impact the occurrence of NTDs, however, the mechanisms involved in the cause of NTDs are poorly defined. Here, we report that histone H3 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) expression was significantly downregulated, and low levels of H3K79me2 were found in the corresponding NTDs samples with their maternal serum folate under low levels. Using ChIP-seq assays, we found that a decrease of H3K79me2 downregulates the expression of Shh and Sufu in mouse embryonic stem cells (mESC) under folate deficiency. Interestingly, folate antagonist methotrexate treatment led to attenuation of H3K79me2 due to Dot1l, affecting Shh and Sufu genes regulation. Upon further analysis, we find that the genes Shh and Sufu are both downregulated in the brain tissues of mice and humans with NTDs. There was a positive correlation between the transcription levels of Shh, Sufu and the protein levels of DOT1L by Pearson correlation analysis. Our results indicate that abnormal Shh and Sufu genes expression reduced by aberrant Dot1l-mediated H3K79me2 levels could be the cause of NTDs occurrence.","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
O-GlcNAcylation: the sweet side of epigenetics O-GlcNA酰化:表观遗传学的甜蜜一面
IF 3.9 2区 生物学
Epigenetics & Chromatin Pub Date : 2023-12-14 DOI: 10.1186/s13072-023-00523-5
Thomas Dupas, Benjamin Lauzier, Serge McGraw
{"title":"O-GlcNAcylation: the sweet side of epigenetics","authors":"Thomas Dupas, Benjamin Lauzier, Serge McGraw","doi":"10.1186/s13072-023-00523-5","DOIUrl":"https://doi.org/10.1186/s13072-023-00523-5","url":null,"abstract":"Histones display a wide variety of post-translational modifications, including acetylation, methylation, and phosphorylation. These epigenetic modifications can influence chromatin structure and function without altering the DNA sequence. Histones can also undergo post-translational O-GlcNAcylation, a rather understudied modification that plays critical roles in almost all biological processes and is added and removed by O-linked N-acetylglucosamine transferase and O-GlcNAcase, respectively. This review provides a current overview of our knowledge of how O-GlcNAcylation impacts the histone code both directly and by regulating other chromatin modifying enzymes. This highlights the pivotal emerging role of O-GlcNAcylation as an essential epigenetic marker.","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the list of sequence-agnostic enzymes for chromatin conformation capture assays with S1 nuclease 利用 S1 核酸酶扩展染色质构象捕获测定的序列鉴定酶列表
IF 3.9 2区 生物学
Epigenetics & Chromatin Pub Date : 2023-12-11 DOI: 10.1186/s13072-023-00524-4
Gridina Maria, Popov Andrey, Shadskiy Artem, Torgunakov Nikita, Kechin Andrey, Khrapov Evgeny, Ryzhkova Oxana, Filipenko Maxim, Fishman Veniamin
{"title":"Expanding the list of sequence-agnostic enzymes for chromatin conformation capture assays with S1 nuclease","authors":"Gridina Maria, Popov Andrey, Shadskiy Artem, Torgunakov Nikita, Kechin Andrey, Khrapov Evgeny, Ryzhkova Oxana, Filipenko Maxim, Fishman Veniamin","doi":"10.1186/s13072-023-00524-4","DOIUrl":"https://doi.org/10.1186/s13072-023-00524-4","url":null,"abstract":"This study presents a novel approach for mapping global chromatin interactions using S1 nuclease, a sequence-agnostic enzyme. We develop and outline a protocol that leverages S1 nuclease's ability to effectively introduce breaks into both open and closed chromatin regions, allowing for comprehensive profiling of chromatin properties. Our S1 Hi–C method enables the preparation of high-quality Hi–C libraries, marking a significant advancement over previously established DNase I Hi–C protocols. Moreover, S1 nuclease's capability to fragment chromatin to mono-nucleosomes suggests the potential for mapping the three-dimensional organization of the genome at high resolution. This methodology holds promise for an improved understanding of chromatin state-dependent activities and may facilitate the development of new genomic methods.","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138565691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The functions of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) in biological process and disease. SET结构域分叉组蛋白赖氨酸甲基转移酶1 (SETDB1)在生物过程和疾病中的作用。
IF 3.9 2区 生物学
Epigenetics & Chromatin Pub Date : 2023-12-07 DOI: 10.1186/s13072-023-00519-1
Hanshen Luo, Xingliang Wu, Xue-Hai Zhu, Xin Yi, Dunfeng Du, Ding-Sheng Jiang
{"title":"The functions of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) in biological process and disease.","authors":"Hanshen Luo, Xingliang Wu, Xue-Hai Zhu, Xin Yi, Dunfeng Du, Ding-Sheng Jiang","doi":"10.1186/s13072-023-00519-1","DOIUrl":"10.1186/s13072-023-00519-1","url":null,"abstract":"<p><p>Histone methyltransferase SETDB1 (SET domain bifurcated histone lysine methyltransferase 1, also known as ESET or KMT1E) is known to be involved in the deposition of the di- and tri-methyl marks on H3K9 (H3K9me2 and H3K9me3), which are associated with transcription repression. SETDB1 exerts an essential role in the silencing of endogenous retroviruses (ERVs) in embryonic stem cells (mESCs) by tri-methylating H3K9 (H3K9me3) and interacting with DNA methyltransferases (DNMTs). Additionally, SETDB1 is engaged in regulating multiple biological processes and diseases, such as ageing, tumors, and inflammatory bowel disease (IBD), by methylating both histones and non-histone proteins. In this review, we provide an overview of the complex biology of SETDB1, review the upstream regulatory mechanisms of SETDB1 and its partners, discuss the functions and molecular mechanisms of SETDB1 in cell fate determination and stem cell, as well as in tumors and other diseases. Finally, we discuss the current challenges and prospects of targeting SETDB1 for the treatment of different diseases, and we also suggest some future research directions in the field of SETDB1 research.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702034/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin balances cell redox and energy homeostasis. 染色质平衡细胞氧化还原和能量稳态。
IF 3.9 2区 生物学
Epigenetics & Chromatin Pub Date : 2023-11-28 DOI: 10.1186/s13072-023-00520-8
Tamaki Suganuma, Jerry L Workman
{"title":"Chromatin balances cell redox and energy homeostasis.","authors":"Tamaki Suganuma, Jerry L Workman","doi":"10.1186/s13072-023-00520-8","DOIUrl":"10.1186/s13072-023-00520-8","url":null,"abstract":"<p><p>Chromatin plays a central role in the conversion of energy in cells: alteration of chromatin structure to make DNA accessible consumes energy, and compaction of chromatin preserves energy. Alteration of chromatin structure uses energy sources derived from carbon metabolism such as ATP and acetyl-CoA; conversely, chromatin compaction and epigenetic modification feedback to metabolism and energy homeostasis by controlling gene expression and storing metabolites. Coordination of these dual chromatin events must be flexibly modulated in response to environmental changes such as during development and exposure to stress. Aging also alters chromatin structure and the coordination of metabolism, chromatin dynamics, and other cell processes. Noncoding RNAs and other RNA species that associate directly with chromatin or with chromatin modifiers contribute to spatiotemporal control of transcription and energy conversion. The time required for generating the large amounts of RNAs and chromatin modifiers observed in super-enhancers may be critical for regulation of transcription and may be impacted by aging. Here, taking into account these factors, we review alterations of chromatin that are fundamental to cell responses to metabolic changes due to stress and aging to maintain redox and energy homeostasis. We discuss the relationship between spatiotemporal control of energy and chromatin function, as this emerging concept must be considered to understand how cell homeostasis is maintained.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential usage of DNA modifications in neurons, astrocytes, and microglia. DNA修饰在神经元、星形胶质细胞和小胶质细胞中的差异用法。
IF 4.2 2区 生物学
Epigenetics & Chromatin Pub Date : 2023-11-13 DOI: 10.1186/s13072-023-00522-6
Kyla B Tooley, Ana J Chucair-Elliott, Sarah R Ocañas, Adeline H Machalinski, Kevin D Pham, Walker Hoolehan, Adam M Kulpa, David R Stanford, Willard M Freeman
{"title":"Differential usage of DNA modifications in neurons, astrocytes, and microglia.","authors":"Kyla B Tooley, Ana J Chucair-Elliott, Sarah R Ocañas, Adeline H Machalinski, Kevin D Pham, Walker Hoolehan, Adam M Kulpa, David R Stanford, Willard M Freeman","doi":"10.1186/s13072-023-00522-6","DOIUrl":"10.1186/s13072-023-00522-6","url":null,"abstract":"<p><strong>Background: </strong>Cellular identity is determined partly by cell type-specific epigenomic profiles that regulate gene expression. In neuroscience, there is a pressing need to isolate and characterize the epigenomes of specific CNS cell types in health and disease. In this study, we developed an in vivo tagging mouse model (Camk2a-NuTRAP) for paired isolation of neuronal DNA and RNA without cell sorting and then used this model to assess epigenomic regulation, DNA modifications in particular, of gene expression between neurons and glia.</p><p><strong>Results: </strong>After validating the cell-specificity of the Camk2a-NuTRAP model, we performed TRAP-RNA-Seq and INTACT-whole genome oxidative bisulfite sequencing (WGoxBS) to assess the neuronal translatome and epigenome in the hippocampus of young mice (4 months old). WGoxBS findings were validated with enzymatic methyl-Seq (EM-Seq) and nanopore sequencing. Comparing neuronal data to microglial and astrocytic data from NuTRAP models, microglia had the highest global mCG levels followed by astrocytes and then neurons, with the opposite pattern observed for hmCG and mCH. Differentially modified regions between cell types were predominantly found within gene bodies and distal intergenic regions, rather than proximal promoters. Across cell types there was a negative correlation between DNA modifications (mCG, mCH, hmCG) and gene expression at proximal promoters. In contrast, a negative correlation of gene body mCG and a positive relationship between distal promoter and gene body hmCG with gene expression was observed. Furthermore, we identified a neuron-specific inverse relationship between mCH and gene expression across promoter and gene body regions.</p><p><strong>Conclusions: </strong>Neurons, astrocytes, and microglia demonstrate different genome-wide levels of mCG, hmCG, and mCH that are reproducible across analytical methods. However, modification-gene expression relationships are conserved across cell types. Enrichment of differential modifications across cell types in gene bodies and distal regulatory elements, but not proximal promoters, highlights epigenomic patterning in these regions as potentially greater determinants of cell identity. These findings also demonstrate the importance of differentiating between mC and hmC in neuroepigenomic analyses, as up to 30% of what is conventionally interpreted as mCG can be hmCG, which often has a different relationship to gene expression than mCG.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating genome-wide DNA methylation heterogeneity with methylation patterns. 用甲基化模式估计全基因组DNA甲基化异质性。
IF 3.9 2区 生物学
Epigenetics & Chromatin Pub Date : 2023-11-09 DOI: 10.1186/s13072-023-00521-7
Pei-Yu Lin, Ya-Ting Chang, Yu-Chun Huang, Pao-Yang Chen
{"title":"Estimating genome-wide DNA methylation heterogeneity with methylation patterns.","authors":"Pei-Yu Lin, Ya-Ting Chang, Yu-Chun Huang, Pao-Yang Chen","doi":"10.1186/s13072-023-00521-7","DOIUrl":"10.1186/s13072-023-00521-7","url":null,"abstract":"<p><strong>Background: </strong>In a heterogeneous population of cells, individual cells can behave differently and respond variably to the environment. This cellular diversity can be assessed by measuring DNA methylation patterns. The loci with variable methylation patterns are informative of cellular heterogeneity and may serve as biomarkers of diseases and developmental progression. Cell-to-cell methylation heterogeneity can be evaluated through single-cell methylomes or computational techniques for pooled cells. However, the feasibility and performance of these approaches to precisely estimate methylation heterogeneity require further assessment.</p><p><strong>Results: </strong>Here, we proposed model-based methods adopted from a mathematical framework originally from biodiversity, to estimate genome-wide DNA methylation heterogeneity. We evaluated the performance of our models and the existing methods with feature comparison, and tested on both synthetic datasets and real data. Overall, our methods have demonstrated advantages over others because of their better correlation with the actual heterogeneity. We also demonstrated that methylation heterogeneity offers an additional layer of biological information distinct from the conventional methylation level. In the case studies, we showed that distinct profiles of methylation heterogeneity in CG and non-CG methylation can predict the regulatory roles between genomic elements in Arabidopsis. This opens up a new direction for plant epigenomics. Finally, we demonstrated that our score might be able to identify loci in human cancer samples as putative biomarkers for early cancer detection.</p><p><strong>Conclusions: </strong>We adopted the mathematical framework from biodiversity into three model-based methods for analyzing genome-wide DNA methylation heterogeneity to monitor cellular heterogeneity. Our methods, namely MeH, have been implemented, evaluated with existing methods, and are open to the research community.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信