Ashish Kumar Singh, Sabine Ines Grünert, Lena Pfaller, Felix Mueller-Planitz
{"title":"酵母ISW2核小体重塑复合体中的wac -down结构域形成了ISW2功能所必需的结构模块,但不是细胞活力。","authors":"Ashish Kumar Singh, Sabine Ines Grünert, Lena Pfaller, Felix Mueller-Planitz","doi":"10.1186/s13072-025-00593-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>ATP-dependent nucleosome remodeling complexes of the imitation switch (ISWI) family slide and space nucleosomes. The ISWI ATPase subunit forms obligate complexes with accessory subunits whose mechanistic roles remain poorly understood. In baker's yeast, the Isw2 ATPase subunit associates with Itc1, the orthologue of human ACF1/BAZ1A. Prior data suggested that the genomic deletion of the 374 N-terminal amino acids from Itc1 (hereafter called itc1<sup>ΔN</sup>) leads to a gain-of-toxic-function phenotype with severe growth defects in the BY4741 genetic background, possibly due to defective nucleosome spacing activity of the mutant complex.</p><p><strong>Results: </strong>Here we show that the deletion encompasses a novel motif termed downWAC that forms a conserved structural module with the N-terminal WAC domain. The module is predicted to interact with DNA. However, it does not form a stable interaction interface with the remainder of the complex. Instead, it is connected through a long disordered polypeptide linker to the remainder of the complex. Curiously, the itc1<sup>ΔN</sup> allele does not lead to measurable growth defects in haploid BY4741 and diploid BY4743 strains. It also does not alter genome-wide nucleosome organization in wild-type cells. To rule out that potentially redundant remodeling factors obscure itc1<sup>ΔN</sup>-associated phenotypes, we repeated experiments in cells devoid of ISW1 and CHD1 remodelers with the same results. Only at known target genes of the ISW2 complex was the nucleosome organization perturbed in itc1<sup>ΔN</sup> cells.</p><p><strong>Conclusions: </strong>We conclude that the deletion of Itc1 N-terminus is indistinguishable from the full deletion of either ITC1 or ISW2. As such, itc1<sup>ΔN</sup> should be considered a null allele of ISW2. We propose a model, in which the WAC-downWAC module, along with a flexible protein linker, helps ISW2 in searching for its target genes and positioning + 1-nucleosomes.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"30"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093815/pdf/","citationCount":"0","resultStr":"{\"title\":\"The WAC-downWAC domain in the yeast ISW2 nucleosome remodeling complex forms a structural module essential for ISW2 function but not cell viability.\",\"authors\":\"Ashish Kumar Singh, Sabine Ines Grünert, Lena Pfaller, Felix Mueller-Planitz\",\"doi\":\"10.1186/s13072-025-00593-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>ATP-dependent nucleosome remodeling complexes of the imitation switch (ISWI) family slide and space nucleosomes. The ISWI ATPase subunit forms obligate complexes with accessory subunits whose mechanistic roles remain poorly understood. In baker's yeast, the Isw2 ATPase subunit associates with Itc1, the orthologue of human ACF1/BAZ1A. Prior data suggested that the genomic deletion of the 374 N-terminal amino acids from Itc1 (hereafter called itc1<sup>ΔN</sup>) leads to a gain-of-toxic-function phenotype with severe growth defects in the BY4741 genetic background, possibly due to defective nucleosome spacing activity of the mutant complex.</p><p><strong>Results: </strong>Here we show that the deletion encompasses a novel motif termed downWAC that forms a conserved structural module with the N-terminal WAC domain. The module is predicted to interact with DNA. However, it does not form a stable interaction interface with the remainder of the complex. Instead, it is connected through a long disordered polypeptide linker to the remainder of the complex. Curiously, the itc1<sup>ΔN</sup> allele does not lead to measurable growth defects in haploid BY4741 and diploid BY4743 strains. It also does not alter genome-wide nucleosome organization in wild-type cells. To rule out that potentially redundant remodeling factors obscure itc1<sup>ΔN</sup>-associated phenotypes, we repeated experiments in cells devoid of ISW1 and CHD1 remodelers with the same results. Only at known target genes of the ISW2 complex was the nucleosome organization perturbed in itc1<sup>ΔN</sup> cells.</p><p><strong>Conclusions: </strong>We conclude that the deletion of Itc1 N-terminus is indistinguishable from the full deletion of either ITC1 or ISW2. As such, itc1<sup>ΔN</sup> should be considered a null allele of ISW2. We propose a model, in which the WAC-downWAC module, along with a flexible protein linker, helps ISW2 in searching for its target genes and positioning + 1-nucleosomes.</p>\",\"PeriodicalId\":49253,\"journal\":{\"name\":\"Epigenetics & Chromatin\",\"volume\":\"18 1\",\"pages\":\"30\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093815/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics & Chromatin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13072-025-00593-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-025-00593-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The WAC-downWAC domain in the yeast ISW2 nucleosome remodeling complex forms a structural module essential for ISW2 function but not cell viability.
Background: ATP-dependent nucleosome remodeling complexes of the imitation switch (ISWI) family slide and space nucleosomes. The ISWI ATPase subunit forms obligate complexes with accessory subunits whose mechanistic roles remain poorly understood. In baker's yeast, the Isw2 ATPase subunit associates with Itc1, the orthologue of human ACF1/BAZ1A. Prior data suggested that the genomic deletion of the 374 N-terminal amino acids from Itc1 (hereafter called itc1ΔN) leads to a gain-of-toxic-function phenotype with severe growth defects in the BY4741 genetic background, possibly due to defective nucleosome spacing activity of the mutant complex.
Results: Here we show that the deletion encompasses a novel motif termed downWAC that forms a conserved structural module with the N-terminal WAC domain. The module is predicted to interact with DNA. However, it does not form a stable interaction interface with the remainder of the complex. Instead, it is connected through a long disordered polypeptide linker to the remainder of the complex. Curiously, the itc1ΔN allele does not lead to measurable growth defects in haploid BY4741 and diploid BY4743 strains. It also does not alter genome-wide nucleosome organization in wild-type cells. To rule out that potentially redundant remodeling factors obscure itc1ΔN-associated phenotypes, we repeated experiments in cells devoid of ISW1 and CHD1 remodelers with the same results. Only at known target genes of the ISW2 complex was the nucleosome organization perturbed in itc1ΔN cells.
Conclusions: We conclude that the deletion of Itc1 N-terminus is indistinguishable from the full deletion of either ITC1 or ISW2. As such, itc1ΔN should be considered a null allele of ISW2. We propose a model, in which the WAC-downWAC module, along with a flexible protein linker, helps ISW2 in searching for its target genes and positioning + 1-nucleosomes.
期刊介绍:
Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.