Qingling He, Jianyang Hu, Hao Huang, Tan Wu, Wenxiu Li, Saravanan Ramakrishnan, Yilin Pan, Kui Ming Chan, Liang Zhang, Mengsu Yang, Xin Wang, Y Rebecca Chin
{"title":"FOSL1 is a key regulator of a super-enhancer driving TCOF1 expression in triple-negative breast cancer.","authors":"Qingling He, Jianyang Hu, Hao Huang, Tan Wu, Wenxiu Li, Saravanan Ramakrishnan, Yilin Pan, Kui Ming Chan, Liang Zhang, Mengsu Yang, Xin Wang, Y Rebecca Chin","doi":"10.1186/s13072-024-00559-1","DOIUrl":"10.1186/s13072-024-00559-1","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with an unmet clinical need, but its epigenetic regulation remains largely undefined. By performing multiomic profiling, we recently revealed distinct super-enhancer (SE) patterns in different subtypes of breast cancer and identified a number of TNBC-specific SEs that drive oncogene expression. One of these SEs, TCOF1 SE, was discovered to play an important oncogenic role in TNBC. However, the molecular mechanisms by which TCOF1 SE promotes the expression of the TCOF1 gene remain to be elucidated. Here, by using combinatorial approaches of DNA pull-down assay, bioinformatics analysis and functional studies, we identified FOSL1 as a key transcription factor that binds to TCOF1 SE and drives its overexpression. shRNA-mediated depletion of FOSL1 results in significant downregulation of TCOF1 mRNA and protein levels. Using a dual-luciferase reporter assay and ChIP-qPCR, we showed that binding of FOSL1 to TCOF1 SE promotes the transcription of TCOF1 in TNBC cells. Importantly, our data demonstrated that overexpression of FOSL1 drives the activation of TCOF1 SE. Lastly, depletion of FOSL1 inhibits tumor spheroid growth and stemness properties of TNBC cells. Taken together, these findings uncover the key epigenetic role of FOSL1 and highlight the potential of targeting the FOSL1-TCOF1 axis for TNBC treatment.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"34"},"PeriodicalIF":4.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin Qiu, Duc C Vu, Leran Wang, Nicholas N Nguyen, Anna K Bookstaver, Katia Sol-Church, Hui Li, Thang N Dinh, Adam N Goldfarb, Daniel G Tenen, Bon Q Trinh
{"title":"Chromatin structure and 3D architecture define the differential functions of PU.1 regulatory elements in blood cell lineages.","authors":"Kevin Qiu, Duc C Vu, Leran Wang, Nicholas N Nguyen, Anna K Bookstaver, Katia Sol-Church, Hui Li, Thang N Dinh, Adam N Goldfarb, Daniel G Tenen, Bon Q Trinh","doi":"10.1186/s13072-024-00556-4","DOIUrl":"10.1186/s13072-024-00556-4","url":null,"abstract":"<p><p>The precise spatiotemporal expression of the hematopoietic ETS transcription factor PU.1, a key determinant of hematopoietic cell fates, is tightly regulated at the chromatin level. However, how chromatin signatures are linked to this dynamic expression pattern across different blood cell lineages remains uncharacterized. Here, we performed an in-depth analysis of the relationships between gene expression, chromatin structure, 3D architecture, and trans-acting factors at PU.1 cis-regulatory elements (PCREs). By identifying phylogenetically conserved DNA elements within chromatin-accessible regions in primary human blood lineages, we discovered multiple novel candidate PCREs within the upstream region of the human PU.1 locus. A subset of these elements localizes within an 8-kb-wide cluster exhibiting enhancer features, including open chromatin, demethylated DNA, enriched enhancer histone marks, present enhancer RNAs, and PU.1 occupation, presumably mediating PU.1 autoregulation. Importantly, we revealed the presence of a common 35-kb-wide CTCF-flanked insulated neighborhood that contains the PCRE cluster (PCREC), forming a chromatin territory for lineage-specific and PCRE-mediated chromatin interactions. These include functional PCRE-promoter interactions in myeloid and B cells that are absent in erythroid and T cells. By correlating chromatin structure and 3D architecture with PU.1 expression in various lineages, we were able to attribute enhancer versus silencer functions to individual elements. Our findings provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in the chromatin regulation of PU.1 expression. This study lays crucial groundwork for additional experimental studies that validate and dissect the role of PCREs in epigenetic regulation of normal and malignant hematopoiesis.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"33"},"PeriodicalIF":4.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531149/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin J Patty, Cailin Jordan, Santana M Lardo, Kris Troy, Sarah J Hainer
{"title":"H3.3K122A results in a neomorphic phenotype in mouse embryonic stem cells.","authors":"Benjamin J Patty, Cailin Jordan, Santana M Lardo, Kris Troy, Sarah J Hainer","doi":"10.1186/s13072-024-00557-3","DOIUrl":"10.1186/s13072-024-00557-3","url":null,"abstract":"<p><p>Canonical histone H3 and histone variant H3.3 are posttranslationally modified with the genomic distribution of these marks denoting different features and these modifications may influence transcription. While the majority of posttranslational modifications occur on histone tails, there are defined modifications within the globular domain, such as acetylation of H3K122/H3.3K122. To understand the function of the amino acid H3.3K122 in transcriptional regulation, we attempted to generate H3.3K122A mouse embryonic stem (mES) cells but were unsuccessful. Through multi-omic profiling of mutant cell lines harboring two or three of four H3.3 targeted alleles, we have uncovered that H3.3K122A is neomorphic and results in lethality. This is surprising as prior studies demonstrate H3.3-null mES cells are viable and pluripotent but exhibit a reduced differentiation capacity. Together, these studies have uncovered a novel dependence of a globular domain residue within H3.3 for viability and broadened our understanding of how histone variants contribute to transcription regulation and pluripotency in mES cells.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"32"},"PeriodicalIF":4.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy.","authors":"Rajkumar Prabhakaran, Rajkumar Thamarai, Sivabalan Sivasamy, Sivanesan Dhandayuthapani, Jyoti Batra, Chinnaperumal Kamaraj, Krishnasamy Karthik, Mohd Asif Shah, Saurav Mallik","doi":"10.1186/s13072-024-00554-6","DOIUrl":"https://doi.org/10.1186/s13072-024-00554-6","url":null,"abstract":"<p><p>Cancer has arisen from both genetic mutations and epigenetic changes, making epigenetics a crucial area of research for innovative cancer prevention and treatment strategies. This dual perspective has propelled epigenetics into the forefront of cancer research. This review highlights the important roles of DNA methylation, histone modifications and non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs, which are key regulators of cancer-related gene expression. It explores the potential of epigenetic-based therapies to revolutionize patient outcomes by selectively modulating specific epigenetic markers involved in tumorigenesis. The review examines promising epigenetic biomarkers for early cancer detection and prognosis. It also highlights recent progress in oligonucleotide-based therapies, including antisense oligonucleotides (ASOs) and antimiRs, to precisely modulate epigenetic processes. Furthermore, the concept of epigenetic editing is discussed, providing insight into the future role of precision medicine for cancer patients. The integration of nanomedicine into cancer therapy has been explored and offers innovative approaches to improve therapeutic efficacy. This comprehensive review of recent advances in epigenetic-based cancer therapy seeks to advance the field of precision oncology, ultimately culminating in improved patient outcomes in the fight against cancer.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"31"},"PeriodicalIF":4.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olga Taryma-Leśniak, Jan Bińkowski, Patrycja Kamila Przybylowicz, Katarzyna Ewa Sokolowska, Konrad Borowski, Tomasz Kazimierz Wojdacz
{"title":"Methylation patterns at the adjacent CpG sites within enhancers are a part of cell identity.","authors":"Olga Taryma-Leśniak, Jan Bińkowski, Patrycja Kamila Przybylowicz, Katarzyna Ewa Sokolowska, Konrad Borowski, Tomasz Kazimierz Wojdacz","doi":"10.1186/s13072-024-00555-5","DOIUrl":"10.1186/s13072-024-00555-5","url":null,"abstract":"<p><strong>Background: </strong>It is generally accepted that methylation status of CpG sites spaced up to 50 bp apart is correlated, and accumulation of locally disordered methylation at adjacent CpG sites is involved in neoplastic transformation, acting in similar way as stochastic accumulation of mutations.</p><p><strong>Results: </strong>We used EPIC microarray data from 596 samples, representing 12 healthy tissue and cell types, as well as 572 blood cancer specimens to analyze methylation status of adjacent CpG sites across human genome, and subsequently validated our findings with NGS and Sanger sequencing. Our analysis showed that there is a subset of the adjacent CpG sites in human genome, with cytosine at one CpG site methylated and the other devoid of methyl group. These loci map to enhancers that are targeted by families of transcription factors involved in cell differentiation. Moreover, our results suggest that the methylation at these loci differ between alleles within a cell, what allows for remarkable level of heterogeneity of methylation patterns. However, different types of specialized cells acquire only one specific and stable pattern of methylation at each of these loci and that pattern is to a large extent lost during neoplastic transformation.</p><p><strong>Conclusions: </strong>We identified a substantial number of adjacent CpG loci in human genome that display remarkably stable and cell type specific methylation pattern. The methylation pattern at these loci appears to reflect different methylation of alleles in cells. Furthermore, we showed that changes of methylation status at those loci are likely to be involved in regulation of the activity of enhancers and contribute to neoplastic transformation.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"30"},"PeriodicalIF":4.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trent Newman, Donna M Bond, Teruhito Ishihara, Phoebe Rizzoli, Quentin Gouil, Timothy A Hore, Geoff Shaw, Marilyn B Renfree
{"title":"PRKACB is a novel imprinted gene in marsupials.","authors":"Trent Newman, Donna M Bond, Teruhito Ishihara, Phoebe Rizzoli, Quentin Gouil, Timothy A Hore, Geoff Shaw, Marilyn B Renfree","doi":"10.1186/s13072-024-00552-8","DOIUrl":"10.1186/s13072-024-00552-8","url":null,"abstract":"<p><strong>Background: </strong>Genomic imprinting results in parent-of-origin-specific gene expression and, among vertebrates, is found only in therian mammals: marsupials and eutherians. A differentially methylated region (DMR), in which the methylation status of CpG dinucleotides differs between the two alleles, can mark the parental identity of imprinted genes. We developed a computational pipeline that detected CpG islands (CGIs) marked by both methylated and unmethylated signals in whole genome bisulfite sequencing data. This approach identified candidate marsupial DMRs in a publicly available koala methylome. One of these candidate DMRs was associated with PRKACB, a gene encoding the protein kinase A catalytic subunit beta. Nothing is known about the imprinting status of PRKACB in eutherian mammals although mutations of this gene are associated with endocrine neoplasia and other developmental disorders.</p><p><strong>Results: </strong>In the tammar wallaby and brushtail possum there was parent-of-origin-specific DNA methylation in the PRKACB DMR in which the maternal allele was methylated and the paternal allele was unmethylated. There were multiple RNAs transcribed from this locus. Allele-specific expression analysis identified paternal expression of a PRKACB lncRNA and an mRNA isoform. Comparison of the PRKACB gene start site between marsupials and eutherians demonstrated that the CGI is longer in marsupials. The PRKACB gene product functions in the same signalling pathway as the guanine nucleotide-binding protein alpha subunit encoded at the GNAS locus, a known eutherian imprinted gene. In a mouse methylome Gnas had three differentially methylated CGIs, while in the koala methylome the GNAS locus had two unmethylated CGIs.</p><p><strong>Conclusions: </strong>We conclude that PRKACB is a novel, DMR-associated marsupial imprinted gene. Imprinting of PRKACB in marsupials and GNAS in eutherians may indicate a conserved selection pressure for imprinting of the protein kinase A signalling pathway in therians with the two lineages adapting by imprinting different genes.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"29"},"PeriodicalIF":4.2,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptional silencing in Saccharomyces cerevisiae: known unknowns","authors":"Namrita Dhillon, Rohinton T. Kamakaka","doi":"10.1186/s13072-024-00553-7","DOIUrl":"https://doi.org/10.1186/s13072-024-00553-7","url":null,"abstract":"Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"47 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of hexokinases in epigenetic regulation: altered hexokinase expression and chromatin stability in yeast.","authors":"Srinivasu Karri, Quinn Dickinson, Jing Jia, Yi Yang, Haiyun Gan, Zhiquan Wang, Yibin Deng, Chuanhe Yu","doi":"10.1186/s13072-024-00551-9","DOIUrl":"10.1186/s13072-024-00551-9","url":null,"abstract":"<p><strong>Background: </strong>Human hexokinase 2 (HK2) plays an important role in regulating Warburg effect, which metabolizes glucose to lactate acid even in the presence of ample oxygen and provides intermediate metabolites to support cancer cell proliferation and tumor growth. HK2 overexpression has been observed in various types of cancers and targeting HK2-driven Warburg effect has been suggested as a potential cancer therapeutic strategy. Given that epigenetic enzymes utilize metabolic intermediates as substrates or co-factors to carry out post-translational modification of histones and nucleic acids modifications in cells, we hypothesized that altering HK2 expression could impact the epigenome and, consequently, chromatin stability in yeast. To test this hypothesis, we established genetic models with different yeast hexokinase 2 (HXK2) expression in Saccharomyces cerevisiae yeast cells and investigated the effect of HXK2-dependent metabolism on parental nucleosome transfer, a key DNA replication-coupled epigenetic inheritance process, and chromatin stability.</p><p><strong>Results: </strong>By comparing the growth of mutant yeast cells carrying single deletion of hxk1Δ, hxk2Δ, or double-loss of hxk1Δ hxk2Δ to wild-type cells, we firstly confirmed that HXK2 is the dominant HXK in yeast cell growth. Surprisingly, manipulating HXK2 expression in yeast, whether through overexpression or deletion, had only a marginal impact on parental nucleosome assembly, but a noticeable trend with decrease chromatin instability. However, targeting yeast cells with 2-deoxy-D-glucose (2-DG), a clinical glycolysis inhibitor that has been proposed as an anti-cancer treatment, significantly increased chromatin instability.</p><p><strong>Conclusion: </strong>Our findings suggest that in yeast cells lacking HXK2, alternative HXKs such as HXK1 or glucokinase 1 (GLK1) play a role in supporting glycolysis at a level that adequately maintains epigenomic stability. While our study demonstrated an increase in epigenetic instability with 2-DG treatment, the observed effect seemed to occur dependent on non-glycolytic function of Hxk2. Thus, additional research is needed to identify the molecular mechanism through which 2-DG influences chromatin stability.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"27"},"PeriodicalIF":4.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niyati Jain, James L Li, Lin Tong, Farzana Jasmine, Muhammad G Kibriya, Kathryn Demanelis, Meritxell Oliva, Lin S Chen, Brandon L Pierce
{"title":"DNA methylation correlates of chronological age in diverse human tissue types.","authors":"Niyati Jain, James L Li, Lin Tong, Farzana Jasmine, Muhammad G Kibriya, Kathryn Demanelis, Meritxell Oliva, Lin S Chen, Brandon L Pierce","doi":"10.1186/s13072-024-00546-6","DOIUrl":"10.1186/s13072-024-00546-6","url":null,"abstract":"<p><strong>Background: </strong>While the association of chronological age with DNA methylation (DNAm) in whole blood has been extensively studied, the tissue-specificity of age-related DNAm changes remains an active area of research. Studies investigating the association of age with DNAm in tissues such as brain, skin, immune cells, fat, and liver have identified tissue-specific and non-specific effects, thus, motivating additional studies of diverse human tissue and cell types.</p><p><strong>Results: </strong>Here, we performed an epigenome-wide association study, leveraging DNAm data (Illumina EPIC array) from 961 tissue samples representing 9 tissue types (breast, lung, colon, ovary, prostate, skeletal muscle, testis, whole blood, and kidney) from the Genotype-Tissue Expression (GTEx) project. We identified age-associated CpG sites (false discovery rate < 0.05) in 8 tissues (all except skeletal muscle, n = 47). This included 162,002 unique hypermethylated and 90,626 hypomethylated CpG sites across all tissue types, with 130,137 (80%) hypermethylated CpGs and 74,703 (82%) hypomethylated CpG sites observed in a single tissue type. While the majority of age-associated CpG sites appeared tissue-specific, the patterns of enrichment among genomic features, such as chromatin states and CpG islands, were similar across most tissues, suggesting common mechanisms underlying cellular aging. Consistent with previous findings, we observed that hypermethylated CpG sites are enriched in regions with repressed polycomb signatures and CpG islands, while hypomethylated CpG sites preferentially occurred in non-CpG islands and enhancers. To gain insights into the functional effects of age-related DNAm changes, we assessed the correlation between DNAm and local gene expression changes to identify age-related expression quantitative trait methylation (age-eQTMs). We identified several age-eQTMs present in multiple tissue-types, including in the CDKN2A, HENMT1, and VCWE regions.</p><p><strong>Conclusion: </strong>Overall, our findings will aid future efforts to develop biomarkers of aging and understand mechanisms of aging in diverse human tissue types.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"25"},"PeriodicalIF":4.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptional regulation mechanism of PARP1 and its application in disease treatment.","authors":"Yu Lu, Wenliang Fu, Weiwei Xing, Haowei Wu, Chao Zhang, Donggang Xu","doi":"10.1186/s13072-024-00550-w","DOIUrl":"10.1186/s13072-024-00550-w","url":null,"abstract":"<p><p>Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"26"},"PeriodicalIF":4.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}