Histone H4 lysine 20 methylation marks genes dynamically regulated during erythroid maturation.

IF 3.5 2区 生物学 Q1 GENETICS & HEREDITY
Kristin Murphy, Michael Getman, Xiurui Lv, Zachary Murphy, Deanna Abid, Nabil Rahman, Michael Bulger, Laurie Steiner
{"title":"Histone H4 lysine 20 methylation marks genes dynamically regulated during erythroid maturation.","authors":"Kristin Murphy, Michael Getman, Xiurui Lv, Zachary Murphy, Deanna Abid, Nabil Rahman, Michael Bulger, Laurie Steiner","doi":"10.1186/s13072-025-00609-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Methylation of H4K20 has been implicated in the regulation of gene expression but also plays essential roles in numerous cellular functions, making studies of its effects on transcription challenging. To gain insights into the role of H4K20 methylation in regulating gene expression, we studied H4K20me1 and H4K20me3 in the context of the well-characterized erythroid differentiation of human hematopoietic stem and progenitor cells.</p><p><strong>Results: </strong>H4K20me1 enrichment over the gene body was strongly correlated with expression changes. During erythroid differentiation, there was a dramatic decline in the level of RNA Polymerase II (Pol II); H4K20me1 was lost where Pol II was lost, and gained at genes where Pol II occupancy was maintained and transcripts were upregulated. We did identify a small subset of highly expressed genes, including beta-globin, that had a dramatic loss of H4K20me1 during erythroid differentiation, despite a substantial gain of Pol II. The histone demethylase PHF8 was present at these genes, as well as at the transcription start site of many active genes. In contrast to H4K20me1 over gene bodies correlating with transcription, enrichment at the transcription start site occurred at genes with low levels of Pol II occupancy and RNA expression throughout erythroid differentiation. The majority of H4K20me3 was present over intergenic regions, consistent with its well-established role as a repressor of repetitive elements. Intriguingly, H4K20me3 was also present at the transcription start site of genes with H4K20me1 over the gene body. At these genes, H4K20me3 levels were highly correlated with chromatin accessibility at the transcription start site, and an elevated Pol II pausing index. There was a dramatic loss of H4K20me3 occupancy in genic, but not intergenic, regions during erythroid differentiation.</p><p><strong>Conclusions: </strong>There are dynamic changes in H4K20 methylation during cellular differentiation that correlate strongly with Pol II occupancy and activity. These changes occurred in genic regions, with H4K20me3 at the transcription start site correlated with Pol II pausing, and H4K20me1 gene body levels tightly linked with transcriptional changes. Together, these data provide important insights into the role of H4K20 methylation in the regulation of gene expression during cellular differentiation.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"48"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-025-00609-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Methylation of H4K20 has been implicated in the regulation of gene expression but also plays essential roles in numerous cellular functions, making studies of its effects on transcription challenging. To gain insights into the role of H4K20 methylation in regulating gene expression, we studied H4K20me1 and H4K20me3 in the context of the well-characterized erythroid differentiation of human hematopoietic stem and progenitor cells.

Results: H4K20me1 enrichment over the gene body was strongly correlated with expression changes. During erythroid differentiation, there was a dramatic decline in the level of RNA Polymerase II (Pol II); H4K20me1 was lost where Pol II was lost, and gained at genes where Pol II occupancy was maintained and transcripts were upregulated. We did identify a small subset of highly expressed genes, including beta-globin, that had a dramatic loss of H4K20me1 during erythroid differentiation, despite a substantial gain of Pol II. The histone demethylase PHF8 was present at these genes, as well as at the transcription start site of many active genes. In contrast to H4K20me1 over gene bodies correlating with transcription, enrichment at the transcription start site occurred at genes with low levels of Pol II occupancy and RNA expression throughout erythroid differentiation. The majority of H4K20me3 was present over intergenic regions, consistent with its well-established role as a repressor of repetitive elements. Intriguingly, H4K20me3 was also present at the transcription start site of genes with H4K20me1 over the gene body. At these genes, H4K20me3 levels were highly correlated with chromatin accessibility at the transcription start site, and an elevated Pol II pausing index. There was a dramatic loss of H4K20me3 occupancy in genic, but not intergenic, regions during erythroid differentiation.

Conclusions: There are dynamic changes in H4K20 methylation during cellular differentiation that correlate strongly with Pol II occupancy and activity. These changes occurred in genic regions, with H4K20me3 at the transcription start site correlated with Pol II pausing, and H4K20me1 gene body levels tightly linked with transcriptional changes. Together, these data provide important insights into the role of H4K20 methylation in the regulation of gene expression during cellular differentiation.

组蛋白H4赖氨酸20甲基化标志着红系成熟过程中动态调控的基因。
背景:H4K20的甲基化与基因表达的调控有关,但在许多细胞功能中也起着重要作用,这使得研究其对转录的影响具有挑战性。为了深入了解H4K20甲基化在调节基因表达中的作用,我们在人类造血干细胞和祖细胞红细胞分化的背景下研究了H4K20me1和H4K20me3。结果:基因体上H4K20me1的富集与表达变化密切相关。在红系分化过程中,RNA聚合酶II (RNA Polymerase II, Pol II)水平急剧下降;H4K20me1在Pol II缺失的地方缺失,在Pol II占据和转录上调的基因上获得。我们确实发现了一小部分高表达基因,包括β -珠蛋白,在红细胞分化过程中H4K20me1显著缺失,尽管Pol II大量增加。组蛋白去甲基化酶PHF8存在于这些基因,以及许多活性基因的转录起始位点。与转录相关基因体上的H4K20me1相反,在整个红细胞分化过程中,转录起始位点的富集发生在Pol II占用和RNA表达水平较低的基因上。大部分H4K20me3存在于基因间区域,这与它作为重复元件抑制因子的作用一致。有趣的是,H4K20me3也存在于基因体上H4K20me1基因的转录起始位点。在这些基因中,H4K20me3水平与转录起始位点的染色质可及性和Pol II暂停指数升高高度相关。在红系分化过程中,H4K20me3在基因区而非基因间的占用率显著下降。结论:细胞分化过程中H4K20甲基化的动态变化与Pol II的占用和活性密切相关。这些变化发生在基因区域,转录起始位点的H4K20me3与Pol II暂停相关,H4K20me1基因体水平与转录变化密切相关。总之,这些数据为H4K20甲基化在细胞分化过程中基因表达调控中的作用提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenetics & Chromatin
Epigenetics & Chromatin GENETICS & HEREDITY-
CiteScore
7.00
自引率
0.00%
发文量
35
审稿时长
1 months
期刊介绍: Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信