Christoph Neu, Manuela Wuelling, Christoph Waterkamp, Daniel Hoffmann, Andrea Vortkamp
{"title":"Bath:用贝叶斯方法分析表观遗传转变揭示了H3K27me3在软骨形成中的双重作用。","authors":"Christoph Neu, Manuela Wuelling, Christoph Waterkamp, Daniel Hoffmann, Andrea Vortkamp","doi":"10.1186/s13072-025-00594-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Histone modifications are key epigenetic regulators of cell differentiation and have been intensively studied in many cell types and tissues. Nevertheless, we still lack a thorough understanding of how combinations of histone marks at the same genomic location, so-called chromatin states, are linked to gene expression, and how these states change in the process of differentiation. To receive insight into the epigenetic changes accompanying the differentiation along the chondrogenic lineage we analyzed two publicly available datasets representing (1) the early differentiation stages from embryonic stem cells into chondrogenic cells and (2) the direct differentiation of mature chondrocyte subtypes.</p><p><strong>Results: </strong>We used ChromHMM to define chromatin states of 6 activating and repressive histone marks for each dataset and tracked the transitions between states that are associated with the progression of differentiation. As differentiation-associated state transitions are likely limited to a reduced set of genes, one challenge of such global analyses is the identification of these rare transitions within the large-scale data. To overcome this problem, we have developed a relativistic approach that quantitatively relates transitions of chromatin states on defined groups of tissue-specific genes to the background. In the early lineage, we found an increased transition rate into activating chromatin states on mesenchymal and chondrogenic genes while mature chondrocytes are mainly enriched in transition between activating states. Interestingly, we also detected a complex extension of the classical bivalent state (H3K4me3/H3K27me3) consisting of several activating promoter marks besides the repressive mark H3K27me3. Within the early lineage, mesenchymal and chondrogenic genes undergo transitions from this state into active promoter states, indicating that the initiation of gene expression utilizes this complex combination of activating and repressive marks. In contrast, at mature differentiation stages the inverse transition, the gain of H3K27me3 on active promoters, seems to be a critical parameter linked to the initiation of gene repression in the course of differentiation.</p><p><strong>Conclusions: </strong>Our results emphasize the importance of a relative analysis of complex epigenetic data to identify chromatin state transitions associated with cell lineage progression. They further underline the importance of serial analysis of such transitions to uncover the diverse regulatory potential of distinct histone modifications like H3K27me3.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"38"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203727/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bath: a Bayesian approach to analyze epigenetic transitions reveals a dual role of H3K27me3 in chondrogenesis.\",\"authors\":\"Christoph Neu, Manuela Wuelling, Christoph Waterkamp, Daniel Hoffmann, Andrea Vortkamp\",\"doi\":\"10.1186/s13072-025-00594-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Histone modifications are key epigenetic regulators of cell differentiation and have been intensively studied in many cell types and tissues. Nevertheless, we still lack a thorough understanding of how combinations of histone marks at the same genomic location, so-called chromatin states, are linked to gene expression, and how these states change in the process of differentiation. To receive insight into the epigenetic changes accompanying the differentiation along the chondrogenic lineage we analyzed two publicly available datasets representing (1) the early differentiation stages from embryonic stem cells into chondrogenic cells and (2) the direct differentiation of mature chondrocyte subtypes.</p><p><strong>Results: </strong>We used ChromHMM to define chromatin states of 6 activating and repressive histone marks for each dataset and tracked the transitions between states that are associated with the progression of differentiation. As differentiation-associated state transitions are likely limited to a reduced set of genes, one challenge of such global analyses is the identification of these rare transitions within the large-scale data. To overcome this problem, we have developed a relativistic approach that quantitatively relates transitions of chromatin states on defined groups of tissue-specific genes to the background. In the early lineage, we found an increased transition rate into activating chromatin states on mesenchymal and chondrogenic genes while mature chondrocytes are mainly enriched in transition between activating states. Interestingly, we also detected a complex extension of the classical bivalent state (H3K4me3/H3K27me3) consisting of several activating promoter marks besides the repressive mark H3K27me3. Within the early lineage, mesenchymal and chondrogenic genes undergo transitions from this state into active promoter states, indicating that the initiation of gene expression utilizes this complex combination of activating and repressive marks. In contrast, at mature differentiation stages the inverse transition, the gain of H3K27me3 on active promoters, seems to be a critical parameter linked to the initiation of gene repression in the course of differentiation.</p><p><strong>Conclusions: </strong>Our results emphasize the importance of a relative analysis of complex epigenetic data to identify chromatin state transitions associated with cell lineage progression. They further underline the importance of serial analysis of such transitions to uncover the diverse regulatory potential of distinct histone modifications like H3K27me3.</p>\",\"PeriodicalId\":49253,\"journal\":{\"name\":\"Epigenetics & Chromatin\",\"volume\":\"18 1\",\"pages\":\"38\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203727/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics & Chromatin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13072-025-00594-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-025-00594-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Bath: a Bayesian approach to analyze epigenetic transitions reveals a dual role of H3K27me3 in chondrogenesis.
Background: Histone modifications are key epigenetic regulators of cell differentiation and have been intensively studied in many cell types and tissues. Nevertheless, we still lack a thorough understanding of how combinations of histone marks at the same genomic location, so-called chromatin states, are linked to gene expression, and how these states change in the process of differentiation. To receive insight into the epigenetic changes accompanying the differentiation along the chondrogenic lineage we analyzed two publicly available datasets representing (1) the early differentiation stages from embryonic stem cells into chondrogenic cells and (2) the direct differentiation of mature chondrocyte subtypes.
Results: We used ChromHMM to define chromatin states of 6 activating and repressive histone marks for each dataset and tracked the transitions between states that are associated with the progression of differentiation. As differentiation-associated state transitions are likely limited to a reduced set of genes, one challenge of such global analyses is the identification of these rare transitions within the large-scale data. To overcome this problem, we have developed a relativistic approach that quantitatively relates transitions of chromatin states on defined groups of tissue-specific genes to the background. In the early lineage, we found an increased transition rate into activating chromatin states on mesenchymal and chondrogenic genes while mature chondrocytes are mainly enriched in transition between activating states. Interestingly, we also detected a complex extension of the classical bivalent state (H3K4me3/H3K27me3) consisting of several activating promoter marks besides the repressive mark H3K27me3. Within the early lineage, mesenchymal and chondrogenic genes undergo transitions from this state into active promoter states, indicating that the initiation of gene expression utilizes this complex combination of activating and repressive marks. In contrast, at mature differentiation stages the inverse transition, the gain of H3K27me3 on active promoters, seems to be a critical parameter linked to the initiation of gene repression in the course of differentiation.
Conclusions: Our results emphasize the importance of a relative analysis of complex epigenetic data to identify chromatin state transitions associated with cell lineage progression. They further underline the importance of serial analysis of such transitions to uncover the diverse regulatory potential of distinct histone modifications like H3K27me3.
期刊介绍:
Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.