{"title":"Non-glycanated ΔDCN isoform in muscle invasive bladder cancer mediates cancer stemness and gemcitabine resistance.","authors":"Nisha Wu, Jinxiang Wang, Mingming Fan, Yanling Liang, Xiao Wei Qi, Fan Deng, Fangyin Zeng","doi":"10.1007/s13402-024-00998-8","DOIUrl":"https://doi.org/10.1007/s13402-024-00998-8","url":null,"abstract":"<p><strong>Background: </strong>The small leucine-rich proteoglycan decorin (DCN) is recognized for its diverse roles in tissue homeostasis and malignant progression. Nevertheless, the regulatory effects of DCN on bladder cancer stem cells (BCSCs) and the underlying mechanisms in muscle-invasive bladder cancer (MIBC) remain to be elucidated.</p><p><strong>Methods: </strong>The study obtained data (including scRNA-seq, clinicopathological characteristics, and survival) were acquired from TCGA and GEO. The BCSCs were cultured by enriching the suspension culture in a serum-free medium, followed by flow cytometry sorting. Overexpression/knockdown was constructed by utilizing lentivirus. The surface biomarkers of cancer stem cells were identified via flow cytometry. Cell proliferation and self-renewal were evaluated by CCK8 and Sphere formation assays, and in vivo tumor growth was evaluated with subcutaneous xenografts.</p><p><strong>Results: </strong>Total DCN expression was significantly elevated in muscle-invasive bladder cancer (MIBC) and was associated with poor prognosis. The ΔDCN isoform, which lacks glycosylation sites, was identified in bladder cancer stem cells (BCSCs) derived from clinical tissue samples and bladder cancer cell lines. Suppression of ΔDCN expression resulted in a reduction of BCSC stemness. Both in vitro and in vivo experiments indicated that overexpression of full-length DCN inhibited stemness within the extracellular matrix. Conversely, overexpression of ΔDCN and the introduction of exogenous recombinant decorin protein in ΔDCN-knockdown BCSC-SW780 cell lines enhanced stemness within the cytoplasm. The ΔDCN isoform exhibited resistance to gemcitabine chemotherapy in vitro.</p><p><strong>Conclusion: </strong>Non-glycanated ΔDCN isoforms were identified in bladder cancer stem cells (BCSCs), where they exhibited differential cytoplasmic localization and promoted oncogenic effects by inducing a stemness phenotype and conferring resistance to gemcitabine chemotherapy. These oncogenic effects are in stark contrast to the anti-tumor functions of glycosylated DCN in the extracellular matrix. The ratio of ΔDCN isoforms to glycosylated DCN is pivotal in predicting tumor progression and therapeutic resistance.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SPG21, a potential oncogene targeted by miR-128-3p, amplifies HBx-induced carcinogenesis and chemoresistance via activation of TRPM7-mediated JNK pathway in hepatocellular carcinoma.","authors":"Ping Zhou, Wei Yao, Lijuan Liu, Qiujin Yan, Xiaobei Chen, Xiaocui Wei, Shuang Ding, Zhao Lv, Fan Zhu","doi":"10.1007/s13402-024-00955-5","DOIUrl":"10.1007/s13402-024-00955-5","url":null,"abstract":"<p><strong>Purpose: </strong>Chronic hepatitis B virus (HBV) infection is the primary risk factor for the malignant progression of hepatocellular carcinoma (HCC). It has been reported that HBV X protein (HBx) possesses oncogenic properties, promoting hepatocarcinogenesis and chemoresistance. However, the detailed molecular mechanisms are not fully understood. Here, we aim to investigate the effects of miR-128-3p/SPG21 axis on HBx-induced hepatocarcinogenesis and chemoresistance.</p><p><strong>Methods: </strong>The expression of SPG21 in HCC was determined using bioinformatics analysis, quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry (IHC). The roles of SPG21 in HCC were elucidated through a series of in vitro and in vivo experiments, including real-time cellular analysis (RTCA), matrigel invasion assay, and xenograft mouse model. Pharmacologic treatment and flow cytometry were performed to demonstrate the potential mechanism of SPG21 in HCC.</p><p><strong>Results: </strong>SPG21 expression was elevated in HCC tissues compared to adjacent non-tumor tissues (NTs). Moreover, higher SPG21 expression correlated with poor overall survival. Functional assays revealed that SPG21 fostered HCC tumorigenesis and invasion. MiR-128-3p, which targeted SPG21, was downregulated in HCC tissues. Subsequent analyses showed that HBx amplified TRPM7-mediated calcium influx via miR-128-3p/SPG21, thereby activating the c-Jun N-terminal kinase (JNK) pathway. Furthermore, HBx inhibited doxorubicin-induced apoptosis by engaging the JNK pathway through miR-128-3p/SPG21.</p><p><strong>Conclusion: </strong>The study suggested that SPG21, targeted by miR-128-3p, might be involved in enhancing HBx-induced carcinogenesis and doxorubicin resistance in HCC via the TRPM7/Ca<sup>2+</sup>/JNK signaling pathway. This insight suggested that SPG21 could be recognized as a potential oncogene, offering a novel perspective on its role as a prognostic factor and a therapeutic target in the context of HCC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellular OncologyPub Date : 2024-10-01Epub Date: 2024-07-31DOI: 10.1007/s13402-024-00968-0
Yan-Yu Kou, Jie Liu, Yung-Ting Chang, Li-Yun Liu, Fan Sun, Yi-Lin Li, Jia-Rong Leng, Hou-Wen Lin, Fan Yang
{"title":"Marine derived macrolide bryostatin 4 inhibits the TGF-β signaling pathway against acute erythroleukemia.","authors":"Yan-Yu Kou, Jie Liu, Yung-Ting Chang, Li-Yun Liu, Fan Sun, Yi-Lin Li, Jia-Rong Leng, Hou-Wen Lin, Fan Yang","doi":"10.1007/s13402-024-00968-0","DOIUrl":"10.1007/s13402-024-00968-0","url":null,"abstract":"<p><strong>Purpose: </strong>Acute erythroleukemia (AEL) is a rare and highly aggressive subtype of acute myeloid leukemia (AML) with an extremely poor prognosis when treated with available drugs. Therefore, new investigational agents capable of inducing remission are urgently required.</p><p><strong>Methods: </strong>Bioinformatics analysis, western blot and qRT-PCR were used to reveal the potential biological mechanism of bryostatin 4 (B4), an antineoplastic macrolide derived from the marine bryozoan Bugula neritina. Then, in vivo experiments were conducted to evaluate the role of transforming growth factor (TGF)-β signaling in the progression of AEL.</p><p><strong>Results: </strong>Our results revealed that the proliferation of K562 cells and TF-1 cells was significantly inhibited by B4 at IC<sub>50</sub> values of 37 nM and 52 nM, respectively. B4 inhibited TGF-β signaling and its downstream pathway targets, particularly the phosphorylation of Smad2, Smad3, Ras, C-RAF, ERK1/2, and MEK. B4 also played an important role in cell invasion and migration in K562 cells and TF-1 cells by reducing the protein levels of the mesenchymal cell marker vimentin. Moreover, Flow cytometry and western blot analyses demonstrated that B4 induced apoptosis and initiated G0/G1 phase arrest by modulating mitochondrial dysfunction and cyclin-dependent kinase (CDK) expression.</p><p><strong>Conclusion: </strong>These findings indicated that B4 could inhibit the proliferation, migration, invasion, and TGF-β signaling pathways of AEL cells, thus suggesting that B4 possesses therapeutic potential as a treatment for AEL.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HVEM in acute lymphocytic leukemia facilitates tumour immune escape by inhibiting CD8<sup>+</sup> T cell function.","authors":"Yujia Liu, Lixiang Wang, Yiyi Li, Cheng Zhong, Xiumei Wang, Xinyu Wang, Zijin Xia, Jing Liao, Chunliu Huang, Chengzhou Mao, Yongyi Feng, Congzhou Luo, Wenhao Mai, Hongrui Song, Hongyu Li, Lin Bao, Danchun Chen, Yue Sheng, Hui Zhang, Xiaolei Wei, Jun Chen, Wei Yi","doi":"10.1007/s13402-024-00959-1","DOIUrl":"10.1007/s13402-024-00959-1","url":null,"abstract":"<p><strong>Purpose: </strong>Leukaemia remains a major contributor to global mortality, representing a significant health risk for a substantial number of cancer patients. Despite notable advancements in the field, existing treatments frequently exhibit limited efficacy or recurrence. Here, we explored the potential of abolishing HVEM (herpes virus entry mediator, TNFRSF14) expression in tumours as an effective approach to treat acute lymphoblastic leukaemia (ALL) and prevent its recurrence.</p><p><strong>Methods: </strong>The clinical correlations between HVEM and leukaemia were revealed by public data analysis. HVEM knockout (KO) murine T cell lymphoblastic leukaemia cell line EL4 were generated using CRISPR-Cas9 technology, and syngeneic subcutaneous tumour models were established to investigate the in vivo function of HVEM. Immunohistochemistry (IHC), RNA-seq and flow cytometry were used to analyse the tumour immune microenvironment (TIME) and tumour draining lymph nodes (dLNs). Immune functions were investigated by depletion of immune subsets in vivo and T cell functional assays in vitro. The HVEM mutant EL4 cell lines were constructed to investigate the functional domain responsible for immune escape.</p><p><strong>Results: </strong>According to public databases, HVEM is highly expressed in patients with ALL and acute myeloid leukemia (AML) and is negatively correlated with patient prognosis. Genetic deletion of HVEM in EL4 cells markedly inhibited tumour progression and prolonged the survival of tumour-bearing mice. Our experiments proved that HVEM exerted its immunosuppressive effect by inhibiting antitumour function of CD8<sup>+</sup> T cell through CRD1 domain both in vivo and in vitro. Additionally, we identified a combination therapy capable of completely eradicating ALL tumours, which induces immune memory toward tumour protection.</p><p><strong>Conclusions: </strong>Our study reveals the potential mechanisms by which HVEM facilitates ALL progression, and highlights HVEM as a promising target for clinical applications in relapsed ALL therapy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellular OncologyPub Date : 2024-10-01Epub Date: 2024-08-12DOI: 10.1007/s13402-024-00975-1
Xun Chen, Pan Wu, Ziqi Liu, Tiansheng Li, Jie Wu, Zhaoyang Zeng, Wenjia Guo, Wei Xiong
{"title":"Tertiary lymphoid structures and their therapeutic implications in cancer.","authors":"Xun Chen, Pan Wu, Ziqi Liu, Tiansheng Li, Jie Wu, Zhaoyang Zeng, Wenjia Guo, Wei Xiong","doi":"10.1007/s13402-024-00975-1","DOIUrl":"10.1007/s13402-024-00975-1","url":null,"abstract":"<p><p>Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates formed by the structured accumulation of immune cells such as B cells and T cells in non-lymphoid tissues induced by infection, inflammation, and tumors. They play a crucial role in the immune response, particularly in association with tumor development, where they primarily exert anti-tumor immune functions during tumorigenesis. Current research suggests that TLSs inhibit tumor growth by facilitating immune cell infiltration and are correlated with favorable prognosis in various solid tumors, serving as an indicator of immunotherapy effectiveness to some extent. Therefore, TLSs hold great promise as a valuable biomarker. Most importantly, immunotherapies aimed to prompting TLSs formation are anticipated to be potent adjuncts to current cancer treatment. This review focuses on the formation process of TLSs and their potential applications in cancer therapy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disrupting YAP1-mediated glutamine metabolism induces synthetic lethality alongside ODC1 inhibition in osteosarcoma.","authors":"Hongsheng Wang, Yining Tao, Jing Han, Jiakang Shen, Haoran Mu, Zhuoying Wang, Jinzeng Wang, Xinmeng Jin, Qi Zhang, Yuqin Yang, Jun Lin, Mengxiong Sun, Xiaojun Ma, Ling Ren, Amy K LeBlanc, Jing Xu, Yingqi Hua, Wei Sun","doi":"10.1007/s13402-024-00967-1","DOIUrl":"10.1007/s13402-024-00967-1","url":null,"abstract":"<p><strong>Purpose: </strong>Osteosarcoma, a highly malignant primary bone tumor primarily affecting adolescents, frequently develops resistance to initial chemotherapy, leading to metastasis and limited treatment options. Our study aims to uncover novel therapeutic targets for metastatic and recurrent osteosarcoma.</p><p><strong>Methods: </strong>In this study, we proved the potential of modulating the YAP1-regulated glutamine metabolic pathway to augment the response of OS to DFMO. We initially employed single-cell transcriptomic data to gauge the activation level of polyamine metabolism in MTAP-deleted OS patients. This was further substantiated by transcriptome sequencing data from recurrent and non-recurrent patient tissues, confirming the activation of polyamine metabolism in progressive OS. Through high-throughput drug screening, we pinpointed CIL56, a YAP1 inhibitor, as a promising candidate for a combined therapeutic strategy with DFMO. In vivo, we utilized PDX and CDX models to validate the therapeutic efficacy of this drug combination. In vitro, we conducted western blot analysis, qPCR analysis, immunofluorescence staining, and PuMA experiments to monitor alterations in molecular expression, distribution, and tumor metastasis capability. We employed CCK-8 and colony formation assays to assess the proliferative capacity of cells in the experimental group. We used flow cytometry and reactive oxygen probes to observe changes in ROS and glutamine metabolism within the cells. Finally, we applied RNA-seq in tandem with metabolomics to identify metabolic alterations in OS cells treated with a DFMO and CIL56 combination. This enabled us to intervene and validate the role of the YAP1-mediated glutamine metabolic pathway in DFMO resistance.</p><p><strong>Results: </strong>Through single-cell RNA-seq data analysis, we pinpointed a subset of late-stage OS cells with significantly upregulated polyamine metabolism. This upregulation was further substantiated by transcriptomic profiling of recurrent and non-recurrent OS tissues. High-throughput drug screening revealed a promising combination strategy involving DFMO and CIL56. DFMO treatment curbs the phosphorylation of YAP1 protein in OS cells, promoting nuclear entry and initiating the YAP1-mediated glutamine metabolic pathway. This reduces intracellular ROS levels, countering DFMO's anticancer effect. The therapeutic efficacy of DFMO can be amplified both in vivo and in vitro by combining it with the YAP1 inhibitor CIL56 or the glutaminase inhibitor CB-839. This underscores the significant potential of targeting the YAP1-mediated glutamine metabolic pathway to enhance efficacy of DFMO.</p><p><strong>Conclusion: </strong>Our findings elucidate YAP1-mediated glutamine metabolism as a crucial bypass mechanism against DFMO, following the inhibition of polyamine metabolism. Our study provides valuable insights into the potential role of DFMO in an \"One-two Punch\" therapy of metastatic and recurrent oste","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"COLEC10 inhibits the stemness of hepatocellular carcinoma by suppressing the activity of β-catenin signaling.","authors":"Mei-Na Cai, Dong-Mei Chen, Xin-Ru Chen, Yu-Rong Gu, Chun-Hong Liao, Le-Xin Xiao, Jia-Liang Wang, Bing-Liang Lin, Yue-Hua Huang, Yi-Fan Lian","doi":"10.1007/s13402-024-00972-4","DOIUrl":"10.1007/s13402-024-00972-4","url":null,"abstract":"<p><strong>Background: </strong>Liver cancer stem cells (CSCs) contribute to tumor initiation, progression, and recurrence in hepatocellular carcinoma (HCC). The Wnt/β-catenin pathway plays a crucial role in liver cancer stemness, progression, metastasis, and drug resistance, but no clinically approved drugs have targeted this pathway efficiently so far. We aimed to elucidate the role of COLEC10 in HCC stemness.</p><p><strong>Methods: </strong>The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases were employed to search for the association between COLEC10 expression and HCC stemness. Colony formation, sphere formation, side population, and limiting dilution tumor initiation assays were used to identify the regulatory role of COLEC10 overexpression in the stemness of HCC cell lines. Wnt/β-catenin reporter assay and immunoprecipitation were performed to explore the underlying mechanism.</p><p><strong>Results: </strong>COLEC10 level was negatively correlated with HCC stemness. Elevated COLEC10 led to decreased expressions of EpCAM and AFP (alpha-fetoprotein), two common markers of liver CSCs. Overexpression of COLEC10 inhibited HCC cells from forming colonies and spheres, and reduced the side population numbers in vitro, as well as the tumorigenic capacity in vivo. Mechanically, we demonstrated that overexpression of COLEC10 suppressed the activity of Wnt/β-catenin signaling by upregulating Wnt inhibitory factor WIF1 and reducing the level of cytoplasmic β-catenin. COLEC10 overexpression promoted the interaction of β-catenin with the component of destruction complex CK1α. In addition, KLHL22 (Kelch Like Family Member 22), a reported E3 ligase adaptor predicted to interact with CK1α, could facilitate COLEC10 monoubiquitination and degradation.</p><p><strong>Conclusion: </strong>COLEC10 inhibits HCC stemness by downregulating the Wnt/β-catenin pathway, which is a promising target for liver CSC therapy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TRIM28 promotes tumor growth and metastasis in breast cancer by targeting the BRD7 protein for ubiquitination and degradation.","authors":"Changning Xue, Hanbing Meng, Weihong Niu, Mengna Li, Jianxia Wei, Shipeng Chen, Lemei Zheng, Yumei Duan, Hongyu Deng, Faqing Tang, Songqing Fan, Ming Tan, Wei Xiong, Ming Zhou","doi":"10.1007/s13402-024-00981-3","DOIUrl":"10.1007/s13402-024-00981-3","url":null,"abstract":"<p><strong>Purpose: </strong>Bromodomain-containing protein 7 (BRD7) is downregulated and functions as a tumor suppressor in many types of cancers including breast cancer, and the dysregulation of BRD7 expression is closely related to the development and progression of breast cancer. Whereas little attention has been focused on the regulation of BRD7 protein levels in breast cancer, which needs to be further elucidated.</p><p><strong>Methods: </strong>The protein stability of BRD7 in breast cancer cells and BRD7 protein level in breast cancer tissues was examined by Western Blotting. The potential E3 ubiquitin ligase proteins that interact with the BRD7 was screened by coimmunoprecipitation combined with mass spectrometry analysis in MDA-MB-231 cells. We proved the interaction between BRD7 and tripartite motif containing 28 (TRIM28) through Co-Immunoprecipitation (Co-IP) and immunofluorescence assays. Co-IP and ubiquitination assay were used to explore the specific binding domain between BRD7 and TRIM28 and the ubiquitination site of BRD7. The effects of TRIM28 on the BRD7 protein stability and ubiquitination level was investigated by qPCR, Western Blot and Co-IP assay. CCK-8 and clone formation assays were carried out to assess the effect of TRIM28 on proliferation ability of breast cancer ells. Transwell assay and wound healing assay were used to investigate the effect of TRIM28 on breast cancer cell invasion and migration. Flow cytometry was used to detect the effect of TRIM28 on cell cycle and apoptosis of breast cancer cells. In addition, we confirmed effect of TRIM28 on tumor growth and metastasis by xenograft and metastatic mouse models. We designed some recovery assays to explore the role of recovery BRD7 in TRIM28-mediated promotion of malignant progression of breast cancer in vivo and in vitro. Finally, the clinical significance of TRIM28 and BRD7 was proved by immunohistochemistry.</p><p><strong>Results: </strong>In this study, we demonstrated that BRD7 was an unstable protein and might be regulated by ubiquitination in breast cancer; furthermore, we found that the Coiled-Coil region of TRIM28 could directly bind to N-terminal of BRD7, and TRIM28 mediates BRD7 ubiquitination and degradation dependent on K21 by acting as a potential E3 ubiquitin ligase. Moreover, TRIM28 promoted cell proliferation, migration, invasion, xenograft tumor growth and metastasis, thus playing an oncogenic role in breast cancer. Furthermore, the restoration of BRD7 expression in breast cancer significantly reversed the promotional effects of TRIM28 on malignant progression both in vitro and in vivo. In addition, TRIM28 was highly expressed in the biopsy tissues of breast cancer, and its expression was negatively correlated with BRD7 expression and positively correlated with TNM stage and poor prognosis of BC patients.</p><p><strong>Conclusions: </strong>Our findings provide a novel mechanism by which TRIM28 significantly facilitates BRD7 ubiquitination and deg","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PSMD2 overexpression as a biomarker for resistance and prognosis in renal cell carcinoma treated with immune checkpoint and tyrosine kinase inhibitors.","authors":"Xianglai Xu, Jiahao Wang, Ying Wang, Yanjun Zhu, Jiajun Wang, Jianming Guo","doi":"10.1007/s13402-024-00977-z","DOIUrl":"10.1007/s13402-024-00977-z","url":null,"abstract":"<p><strong>Background: </strong>Integrated immune checkpoint inhibitors (ICIs) plus tyrosine kinase inhibitors (TKIs) are now the recommended first-line therapy to manage renal cell carcinoma (mRCC). Proteasome 26S subunit non-ATPase 2 (PSMD2) overexpression in tumors has been correlated with tumor progression. Currently, mRCC lacks an established biomarker for the combination of ICI+TKI.</p><p><strong>Methods: </strong>This study involved RNA sequencing of RCC patients from two cohorts treated with ICI+TKI (ZS-MRCC and JAVELIN-Renal-101). We utilized immunohistochemistry alongside flow cytometry, aiming at assessing immune cell infiltration and functionality in high-risk localized RCC samples. Response and progression-free survival (PFS) were evaluated relying upon RECIST criteria.</p><p><strong>Results: </strong>PSMD2 was significantly overexpressed in advanced RCC and among non-responders to ICI+TKI therapy. Overexpressed PSMD2 was correlated with poor PFS in the ZS-MRCC and JAVELIN-101 cohorts. Multivariate Cox analysis validated PSMD2 as an independent PFS predictor. PSMD2 overexpression was related to a reduction in CD8<sup>+</sup> T cells, especially GZMB<sup>+</sup> CD8<sup>+</sup> T cells, besides an increase in PD1<sup>+</sup> CD4<sup>+</sup> T cells. Additionally, tumors with high PSMD2 levels showed enhanced T cell exhaustion levels and a higher regulatory T cell presence. A Machine Learning (ML) model based on PSMD2 expression and other screened factors was subsequently developed to predict the effectiveness of ICI+TKI.</p><p><strong>Conclusions: </strong>Elevated PSMD2 expression is linked to resistance and decreased PFS in mRCC patients undergoing ICI+TKI therapy. High PSMD2 levels are also associated with impaired function and increased exhaustion of tumor-infiltrating lymphocytes. An ML model incorporating PSMD2 expression could potentially identify patients who may have a higher likelihood of benefiting from ICI+TKI.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}