{"title":"GMPS inhibits the proliferation and migration of non-small cell lung cancer via the regulation of the DNMT 1/SERPINB2 axis.","authors":"Tingting Guo, Lei Liu, Lingyan Zeng, Ying Yang, Tingting Song, Huachang Zhao, Zhixin Qiu","doi":"10.1007/s13402-025-01078-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-small cell lung cancer (NSCLC) mainly includes lung squamous cell carcinoma and lung adenocarcinoma, and its extremely high morbidity and mortality are the main causes of poor prognosis in NSCLC patients. Therefore, it is particularly important to study the mechanisms associated with tumor proliferation and metastasis and explore new molecular targets of NSCLC. Studies have shown that Guanosine monophosphate synthase (GMPS) may serve as a potential drug target, but its biological function and molecular mechanism in NSCLC are still unknown. Therefore, it is urgently needed to investigate the molecular mechanisms of GMPS.</p><p><strong>Methods: </strong>We first analyzed 30 cases of lung adenocarcinoma, lung squamous carcinoma and adjacent tissues; Then, lentiviral technology was used to construct overexpressed or knocked out cell lines to verify the function of GMPS. Then, RNA sequencing and Western blot experiments were carried out in animal experiments to explore the mechanism of GMPS. Our experimental results suggest that GMPS plays an important role in the progression of NSCLC.</p><p><strong>Results: </strong>We found that GMPS was highly expressed in lung adenocarcinoma and lung squamous cell carcinoma tissues, and was associated with poor prognosis of patients. Down-regulation of GMPS inhibits tumor progression. And GMPS promotes lung cancer cell migration through the SERPINB2-uPA axis, and DNMT1 is an intermediate factor in GMPS regulating SERPINB2 expression. Our experimental results show that GMPS expression is associated with lung cancer invasion and migration.</p><p><strong>Conclusions: </strong>Our findings revealed the correlation between GMPS and the prognosis of NSCLC at the tissue level. Secondly, GMPS can promote the progression of NSCLC. The molecular mechanism of GMPS affecting the metastasis of lung cancer cells was elucidated. These findings highlight the important role of GMPS in NSCLC, so as to provide new insights for the identification of new targets and lay a theoretical foundation for the clinical application of GMPS.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"1145-1158"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01078-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Non-small cell lung cancer (NSCLC) mainly includes lung squamous cell carcinoma and lung adenocarcinoma, and its extremely high morbidity and mortality are the main causes of poor prognosis in NSCLC patients. Therefore, it is particularly important to study the mechanisms associated with tumor proliferation and metastasis and explore new molecular targets of NSCLC. Studies have shown that Guanosine monophosphate synthase (GMPS) may serve as a potential drug target, but its biological function and molecular mechanism in NSCLC are still unknown. Therefore, it is urgently needed to investigate the molecular mechanisms of GMPS.
Methods: We first analyzed 30 cases of lung adenocarcinoma, lung squamous carcinoma and adjacent tissues; Then, lentiviral technology was used to construct overexpressed or knocked out cell lines to verify the function of GMPS. Then, RNA sequencing and Western blot experiments were carried out in animal experiments to explore the mechanism of GMPS. Our experimental results suggest that GMPS plays an important role in the progression of NSCLC.
Results: We found that GMPS was highly expressed in lung adenocarcinoma and lung squamous cell carcinoma tissues, and was associated with poor prognosis of patients. Down-regulation of GMPS inhibits tumor progression. And GMPS promotes lung cancer cell migration through the SERPINB2-uPA axis, and DNMT1 is an intermediate factor in GMPS regulating SERPINB2 expression. Our experimental results show that GMPS expression is associated with lung cancer invasion and migration.
Conclusions: Our findings revealed the correlation between GMPS and the prognosis of NSCLC at the tissue level. Secondly, GMPS can promote the progression of NSCLC. The molecular mechanism of GMPS affecting the metastasis of lung cancer cells was elucidated. These findings highlight the important role of GMPS in NSCLC, so as to provide new insights for the identification of new targets and lay a theoretical foundation for the clinical application of GMPS.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.